Supplemental file

Table S1 is provided for comparison between experimental data of overall mass transfer coefficient based on continuous phase and predicted values by the previous correlations for several mechanical extraction columns, i.e., pulse sieve plate column (PSC), pulse packed column (PPC), rotating disc contactor (RDC), Kühni and spray column. Average absolute relative deviation (AARD) is used to compare the results. As can be seen from Table S 1 , none of previous correlations are suitable to accurately determine the overall mass transfer coefficient in the horizontal-vertical pulsed packed column. However, deviation values represents the experimental data for overall mass transfer coefficient obtained in the horizontal-vertical pulse packed extraction column are roughly similar to those obtained in the other extraction columns (the last six equations).

Table S1- The AARE between the $K_{o c}$ obtained by the previous correlation and experimental data

Researcher	Equation	AARD (\%)	
		H	V
Lochiel and Calderbank ${ }^{35}$	$S h_{c}=0.7 R e^{0.5} S c^{1 / 3} \quad$ High Reynolds number	420	513
Clift et al. ${ }^{33}$	$S h_{c}=\frac{2}{\sqrt{\pi}}\left(P e_{c}\right)^{1 / 2} \quad$ High Reynolds number	732	802
Brauer et al. ${ }^{29}$	$S h_{c}=2+\left[\frac{0.66}{1+S c_{c}}+\frac{S c_{c}}{2.4+S c_{c}}\left(\frac{0.79}{S c_{c}^{1 / 6}}\right)\right]\left(\frac{P e_{c}^{1.7}}{1+P e_{c}^{1.2}}\right) \quad 1<\mathrm{Re}<1000$	330	373
Clift et al. ${ }^{33}$	$S h_{c}=1+0.724 R e^{0.48} S c_{c}^{1 / 3} \quad 100<R e<2000, S c>200$	410	493
Weber et al. ${ }^{34}$	$\left.S h_{c}=2\left(\frac{P e_{c}}{\pi}\right)^{1 / 2}\left[1-\frac{1}{R e^{1 / 2}}\left(2.89+2.15\left(\frac{\mu_{d}}{\mu_{c}}\right)\right)^{0.64}\right)\right]^{1 / 2} \quad \frac{\rho_{d}}{\rho_{c}}<4 ; \frac{\mu_{d}}{\mu_{c}}<4$	273	300
Seibert and Fair ${ }^{32}$	$S h_{c}=0.698 R e^{0.5} S c^{0.4}(1-\varphi)$	295	316
He et al. ${ }^{30}$	$K_{\text {oc }} a=1.4296 u^{0.6685} u^{0.2404}{ }_{d} A f^{0.5536} \quad D_{c}=0.05 \mathrm{~m}$	98	113
Torab-mostaedi and safdari ${ }^{9}$	$S h_{O c}=-49.76+14.8 \mathrm{Re}^{0.64} \quad \mathrm{C}$ to d direction, $10<R e<150$	54	71

Safari et al. ${ }^{12} \quad \frac{K_{o c} a d_{32}}{\rho_{c} u_{\text {slip }}}=1.9 \times 10^{-8} \frac{R e^{1.78}}{(1-\varphi)^{2}}\left(\frac{A f}{u_{\text {slip }}}\right)^{0.09}\left(\frac{u_{d}}{u_{c}}\right)^{1.62}$	91

Asadollahzadeh et al. ${ }^{16}$	$S h_{o c}=-12.2+8.56 R e^{0.514}(1-\varphi)$	C to d direction, $4.99<R e<23.96$	65	83
Torab-mostaedi et al. ${ }^{19}$	$S h_{o c}=12.34+0.116 R e^{1.389}$	$S h_{o c}=2.586+0.000217 R e^{4.86}$	$R e>10$	
	$R e<10$	89	105	

Kumar and

$$
\begin{gathered}
\frac{S h_{d}(1-\varphi)-S h_{c, r i g i d}}{S h_{c, \infty}-S h_{c} /(1-\varphi)}=5.26 \times 10^{-2} \operatorname{Re}^{\frac{1}{3}+6.59 \times 10^{-2} R e^{\frac{1}{4}}} S c_{c}^{1 / 3}\left(\frac{V_{s} \mu_{c}}{\sigma}\right)^{1 / 3} \frac{1}{1+\left(\mu_{d /}\right.} \\
S h_{d}=17.7+\frac{3.19 \times 10^{-3}\left(R e S c_{d}^{1 / 3}\right)^{1.7}}{1+1.43 \times 10^{-2}\left(\operatorname{ReSc}_{d}^{1 / 3}\right)^{0.7}}\left(\frac{\rho_{d}}{\rho_{c}}\right)^{2 / 3} \frac{1}{1+\left(\mu_{d} / \mu_{c}\right)^{2 / 3}}\left[1+4.33\left\{\frac{\varepsilon_{D}}{g}(\right.\right. \\
\varepsilon_{D}=\frac{2 \pi^{2}\left(1-\alpha^{2}\right)}{3 h C_{D}^{2} \alpha^{2}} A f^{3} \quad C_{D}=0.6 \\
S h_{c, r i g i d}=2.43+0.775 \operatorname{Re}^{1 / 2} S c_{c}^{1 / 3}+0.0103 R e S c_{c}^{1 / 3} \\
S h_{c, \infty}=50+\frac{2}{\sqrt{\pi}}\left(P e_{c}\right)^{1 / 2}
\end{gathered}
$$

