Supporting Information

The study of perylene diimide-amino acids derivatives on fluorescent detecting of anions

ChaoYuan Chen, Ke Wang, Lei Lei Gu, Hui Li*

Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

*E-mail address: lihui@bit.edu.cn; Tel: 86-10-68912667

Contents

Section 1 ¹H NMR and ¹³C NMR spectra of the H₂PDIAAs

Section 2 IR of the $H_2PDIAAs$

Section 3 ESI-MS of the $H_2PDIAAs$

Section 4 UV-vis absorbance of the $H_2PDIAAs$ with anions

Section 5 Fluorescence of the $H_2PDIAAs$ with anions

Section 6 Fluorescence lifetime decay of the H₂PDIAAs

Section 7 ¹H-NMR of the H_2 PDIAla with TBAOH

Section 1 ¹H NMR and ¹³C NMR spectra of the H₂PDIAAs

Fig.S1 Spectra of the H₂PDIAla in DMSO-*d*⁶ solution.

Fig.S2¹³C NMR spectra of the H_2 PDIAla in DMSO-*d*⁶ solution.

Fig.S3 ¹H NMR spectra of the H_2 PDIGlu in DMSO- d^6 solution.

Fig.S4 ¹³C NMR spectra of the H₂PDIGlu in DMSO-*d*⁶ solution.

Fig.S5¹H NMR spectra of the $H_2PDIPhe$ in DMSO- d^6 solution.

Fig.S6 ¹³C NMR spectra of the H₂PDIPhe in DMSO-*d*⁶ solution.

Fig.S7 ¹H NMR spectra of the **H**₂**PDITyr** in DMSO-*d*⁶ solution.

Fig.S8 ¹³C NMR spectra of the **H**₂**PDITyr** in DMSO-*d*⁶ solution.

Fig.S9IR of the H₂PDIAla.

Fig.S10 IR of the H₂PDIGlu.

Fig.S11 IR of the H₂PDIPhe.

Fig.S12 IR of the H₂PDITyr.

Section 3 ESI-MS of the H₂PDIAAs

Fig.S13 ESI-MS of the H₂PDIAla.

Fig.S16 ESI-MS of the H₂PDITyr

Fig.S17 UV-vis spectra of H₂PDIAAs $(1 \times 10^{-5} \text{ M})$ with the different anions(6 eq, each) in DMF, (a) H₂PDIAla, (b) H₂PDIGlu, (c) H₂PDIPhe, (d) H₂PDITyr.

Fig.S18 Absorbance changes of H_2 PDIGlu (1 × 10⁻⁵ M) in DMF on addition of 0-10 equivalents of TBAF. Inset: UV absorption intensity at 700 nm vs concentration of F⁻.

Fig.S19 UV-vis titration of H₂PDIAAs with TBOH in DMF (1×10^{-5} M), (a) H₂PDIAla, (b) H₂PDIGlu, (c) H₂PDIPhe, (d) H₂PDITyr, Inset: UV absorbance intensity at 700 nm vs concentration of OH⁻ ion.

Fig.S20 Fluorescence spectra of H₂PDIAAs (1×10^{-5} M) with the different anions(6 eq, each) in DMF ($\lambda_{ex} = 525$ nm), (a) H₂PDIAla, (b) H₂PDIGlu, (c) H₂PDIPhe, (d) H₂PDITyr.

Fig.S21 Fluorescence emission of H₂PDIAAs with TBAOH titration in DMF (1×10^{-5} M) (λ_{ex} = 525 nm), (a) H₂PDIAla, (b) H₂PDIGlu, (c) H₂PDIPhe, (d) H₂PDITyr.

Fig.S22 (a) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365 \text{ nm}$) for H₂PDIGlu with various anions(6 eq, each), (b) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365 \text{ nm}$) of H₂PDIGlu-F⁻ ion with various ions (6 eq, each).

Fig.S23 (a) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365$ nm) for H₂PDIPhe with various anions(6 eq, each), (b) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365$ nm) of H₂PDIPhe-F⁻ ion with various ions (6 eq, each).

Fig.S24 (a) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365$ nm) for H₂PDITyr with various anions(6 eq, each), (b) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365$ nm) of H₂PDITyr-F⁻ ion with various ions (6 eq, each).

Fig.S25 (a) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365$ nm) for H₂PDIALa with various anions(6 eq, each), The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365$ nm) of H₂PDIAla-OH⁻ ion with various ions (6 eq, each).

Fig.S26 (a) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365$ nm) for H₂PDIGlu with various anions(6 eq, each), (b) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365$ nm) of H₂PDIGlu-OH⁻ ion with various ions (6 eq, each).

Fig.S27 (a) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365$ nm) for H₂PDIPhe with various anions(6 eq, each), (b) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365$ nm) of H₂PDIPhe-OH⁻ ion with various ions (6 eq, each).

Fig.S28 (a) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365$ nm) for H₂PDITyr with various anions(6 eq, each), (b) The photographs of colorimetric identification by naked eye and fluorescence emission ($\lambda = 365$ nm) of H₂PDITyr-OH⁻ ion with various ions (6 eq, each).

Fig.S29 Fluorescence spectra of H₂PDIAla (1×10^{-5} M) added the TBAF, and the mixture solution with the different anions(6 eq, each) in DMF ($\lambda_{ex} = 525$ nm).

Fig.S30 Fluorescence spectra of H₂PDIAla (1×10^{-5} M) added the TBAOH, and the mixture solution with the different anions(6 eq, each) in DMF ($\lambda_{ex} = 525$ nm).

Section 6. Fluorescence lifetime decay of the H₂PDIAAs

Fig.S31 Fluorescence lifetime decay of H_2 PDIAla (1 × 10⁻⁵ M) in DMF. (b) Fluorescence lifetime decay of H_2 PDIGlu. (c) Fluorescence lifetime decay of H_2 PDIPhe. (d) Fluorescence lifetime decay of H_2 PDITyr.

Section 7. ¹H-NMR of the $H_2PDIAla$ with TBAOH

Fig.S32 The ¹H-NMR titrations of H₂PDIAla with TBAOH in DMSO-*d*⁶.