Supplementary material

Arsenene/Ca(OH)₂ van der Waals heterostructure: Strain tunable electronic and photocatalytic properties

Xiao-Hua Li,^a Bao-Ji Wang,^{*a} Xiao-Lin Cai,^a Wei-Yang Yu,^a Li-Wei Zhang,^a Guo-Dong Wang,^a and San-Huang Ke^{*b}

^aSchool of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000,

China

^bMOE Key Labortoray of Microstructured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China

> *Corresponding author: <u>wbj@hpu.edu.cn</u> [†]Corresponding author: <u>shke@tongji.edu.cn</u>

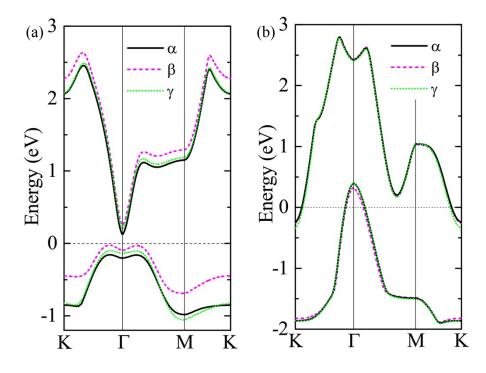


Fig. S1. (Color online) The evolutions of the highest valence bands and the lowest conduction bands of the A/C heterostructures with α -, β -, and γ -stacking under (a) +10% tensile and (b) -10% compressive biaxial strains, respectively.

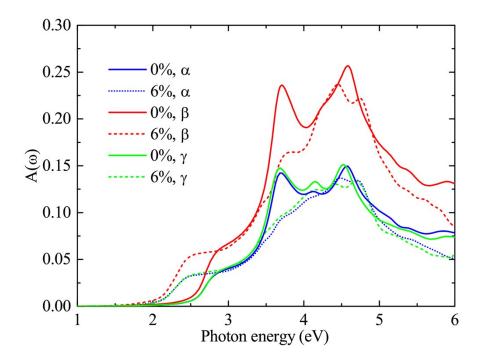


Fig.S2. (Color online) The optical absorbance spectrum $A(\omega)$ of A/C heterostructure with α -, β -, and γ -stacking at the strains of 0% and +6%. $A(\omega)$ is calculated using the PBE functional followed by a rigid energy shift to take into account the bandgap underestimation of the PBE functional.