Supporting Information

Nickel Tungstate-Graphene Nanocomposite for Simultaneous Electrochemical Detection of Heavy Metal Ions with Application to Complex Aqueous Media

Rudra Kumar,^{a#} Thiruvelu Bhuvana,^{b#*} and Ashutosh Sharma^{a*}

^aDepartment of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India.

^bDepartment of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, India

E-mail: bhuvana@iitk.ac.in; ashutos@iitk.ac.in

contributed equally

XPS

X-ray photoelectron spectroscopy (XPS, PHI 5000 Versa Prob II, FEI, USA) were measured in the range from 0-1100 eV. The chemical bonding and composition were determined by XPS and the survey scan of RGO/NiWO₄ nanocomposite is shown in **Figure S1a**. The peak identified at 36, 68, 112, 259, 284, 426, 496, 531 and 857 eV corresponded to W (4f), Ni (3p), Ni (3s), W (4d), C (1s), W (4p_{3/2}), W (4p_{1/2}), O (1s), Ni(2p) eV respectively. The high resolution of Ni 2p spectra shown is in the **Figure S1b**. The peak obtained at 856.1eV of Ni 2p_{3/2} confirmed the presence of Ni ions in divalent oxidation state.¹ The peak of Ni 2p_{1/2} core level was identified at 873.7 eV. Further, the satellite peak at 863.14 eV corresponded to Ni 2p_{3/2}. The energy difference of 17.27 eV in between of Ni 2p_{3/2} and Ni 2p_{1/2} core levels confirmed the Ni²⁺ oxidation state. Furthermore, the W 4f_{7/2} peak appearing at 35.8 eV and combining with the Ni 2p_{3/2} peak at 856.1 eV together suggested the formation of NiWO₄ binary metal oxide.² **Figure S1c** showed the high-resolution XPS spectra of W 4f. The peak obtained at 35.8 and 38 eV corresponded to W4f_{7/2} and W4f_{5/2} respectively. The deconvoluted O 1s core level spectrum (**Figure S1d**) showed two peaks at 531.4 eV and 533.6 eV, respectively, attributed to the oxygen species in nickel spinel oxide and C=O.³ The deconvoluted C 1s core level spectrum (**Figure S1e**) showed four binding energies at 284.8 eV, 285.8 eV, 288.4 eV, and 291.0 eV, corresponding to sp² and sp³ hybridized carbon, C–O, and O=C–O functional groups, respectively.³

Figure S1: XPS of RGO/NiWO₄ nanocomposite (a) survey spectrum, (b) Ni 2p, (c) W 4f, (d) O 1s and (e) C 1s.

Energy dispersive X-ray spectroscopy (EDX) and elemental mapping of RGO/NiWO₄ nanocomposite are shown in **Figure S2** which confirmed the homogeneous distribution of C, O, Ni, and W elements.

Figure S2: (a) EDX of RGO/NiWO₄ nanocomposite, (b) SEM and elemental mapping of Ni, W, O and C (c-f) respectively.

BET

The specific surface area and total pore volume of NiWO₄ and RGO/NiWO₄ nanocomposite were measured by N₂ adsorption/desorption isotherm using Autosorb iQ-BET, Quantachrome Instruments, USA. **Figure S3a and S3b** showed the nitrogen adsorption desorption isotherm. The Brunauer–Emmett–Teller (BET) surface area of NiWO₄ and RGO/NiWO₄ nanocomposite were 18 m² g⁻¹ and 56 m² g⁻¹, respectively. The total pore volume of NiWO₄ and RGO/NiWO₄ nanocomposite was 0.016 cm³ g⁻¹ and 0.15 cm³ g⁻¹, respectively. The increase in surface area, as well as pore volume of RGO/NiWO4 nanocomposite, is due to the wrapping of high surface area graphene sheets into NiWO₄ nanoparticles, which also prevented the restacking of graphene sheets. The pore size distribution was determined by Barrett–Joyner–Halenda (BJH) method. Inset of **Figure S3(a-b)** shows the pore size distribution of NiWO₄ and RGO/NiWO₄ nanocomposite, confirmed the mesoporous nature. The pore size of 3.82 nm and 9.54 nm were obtained for NiWO₄ NPs and RGO/NiWO₄, respectively.

Figure S3: N_2 Adsorption desorption spectra of (a) NiWO₄ NPs and (b) RGO/NiWO₄ nanocomposite and inset showing pore size distribution.

Туре	Analyte	Sensitivity	vity LOD Correlation		Intercept	
		$(mA.\mu M^{-1}.cm^{-2})$	(10^{-10} M)	Coefficient		
Individual	Cd(II)	0.1145	4.75	0.9978	0.5419	
Analysis	Pb(II)	0.0341	3.79	0.9910	5.327	
	Cu(II)	0.0401	4.41	0.9986	1.616	
	Hg(II)	0.0683	2.83	0.9968	1.0549	
Simultaneous	Cu(II)	0.1173	1.12	0.9967	0.8899	
Analysis	Hg(II)	0.1245	1.20	0.971	0.9794	
Simultaneous	Cd(II)	0.0622	0.12	0.9905	0.7597	
Analysis	Cu(II)	0.1411	1.16	0.9954	1.6348	
	Hg(II)	0.1651	1.36	0.9975	1.6368	
Simultaneous	Pb(II)	0.08571	2.04	0.9952	3.168	
Analysis	Cu(II)	0.07432	1.77	0.9983	4.304	
	Hg(II)	0.08094	1.92	0.9962	3.742	
Simultaneous	Cd(II)	0.00998	2.05	0.9883	0.0814	
Analysis	Pb(II)	0.0098	1.95	0.9943	0.0202	
	Cu(II)	0.01465	3.42	0.9958	0.088	
	Hg(II)	0.01401	3.41	0.9813	0.0952	
Carbonated	Cd(II)	0.0008	1.11	0.9965	0.0148	
Drink	Pb(II)	0.0147	2.04	0.9999	0.0812	
	Cu(II)	0.0202	2.80	0.9883	0.1132	
	Hg(II)	0.2192	3.05	0.9929	0.1193	

Table	S1:	Comparative	study	of th	e ele	ectrochemical	detection	of	Cd(II),	Pb(II),	Cu(II),
Hg(II)	ions	performed for	RGO/	NiWC	\mathbf{b}_4 na	anocomposite e	electrode.				

Milk	Cd(II)	0.0027	3.83	0.9993	0.00673
	Pb(II)	0.0149	2.09	0.9984	0.00581
	Cu(II)	0.0125	1.74	0.9983	0.00547
	Hg(II)	0.00671	9.34	0.9927	0.00671
Orange Juice	Cd(II)	0.0211	2.72	0.9905	0.0299
	Pb(II)	0.01634	2.26	0.9999	0.0898
	Cu(II)	0.1468	2.04	0.9870	0.022
	Hg(II)	0.02073	2.88	0.9907	0.0089

Table S2. Comparison of LOD from literature for individual and simultaneous detection

Туре	Analyte	LOD	Ref
		(10^{-10} M)	
Individual	Cd(II)	4.75	Present
Analysis	Pb(II)	3.79	
	Cu(II)	4.41	
	Hg(II)	2.83	
Simultaneous	Cd(II)	2.05	
Analysis	Pb(II)	1.95	
	Cu(II)	3.42	
	Hg(II)	3.41	
Individual	Cd(II)	3.8	4
Analysis	Pb(II)	2.5	
	Cu(II)	13.0	
	Hg(II)	2.7	
Simultaneous	Cd(II)	4.1	
Analysis	Pb(II)	5.0	
	Cu(II)	6.6	
	Hg(II)	5.4	
Individual	Cd(II)	4.1	5
Analysis	Pb(II)	7.2	
	Cu(II)	79.1	
	Hg(II)	6.5	
Simultaneous	Cd(II)	24.4	
Analysis	Pb(II)	5.7	
	Cu(II)	23.2	
	Hg(II)	24.6	

Cyclic voltammetry in an aqueous solution of 0.1 M KCl containing 5 mM $Fe(CN)_6^{3-}$ in the voltage range of -0.1 V to 0.6 V with scan rate varying from 10 to 100 mV s⁻¹. The results are shown in **Figure S4** in Supporting Information. It is clear that as the scan rate increases, the

anodic and cathodic peak current increases linearly (see **Figure S4a**). A plot of anodic and cathodic peak current versus scan rate is also shown in **Figure S4b**. A linear trend indicates that this process is surface confined and thus adsorption controlled process.

Figure S4: (a) Cyclic voltammograms at different scan rates from 10 to 100 mV s⁻¹ and (b) plot of the anodic and cathodic peak current versus the scan rate.

Figure S5 shows the XPS spectra of RGO/NiWO₄ nanocomposite electrode after 50 CV cycles and before the stripping of heavy metals are performed. The peak positions of C 1s, O 1s, Ni 2p and W4f are similar to our nanocomposite (Figure S1). The extra peak appears in the survey scan at 685 eV corresponded to fluoride ions from the PVDF binder during the electrode preparation. In Figure S6, peaks of Cd 3d, Hg 4f, Cu 2p, and Pb 4f appeared along with C 1s, O 1s, Ni 2p and W4f, signifying the adsorption of heavy metal ions on the surface of the electrode. The peak positions after the stripping analysis are also comparable to the pristine and cycled samples.

Figure S5: XPS of RGO/NiWO₄ nanocomposite electrode after 50 cycling but before DPASV (a) survey spectrum, (b) C 1s, (c) Ni 2p, (d) W 4f and (e) O 1s.

Figure S6: XPS of RGO/NiWO₄ nanocomposite electrode after 50 cycling and DPASV (a) survey spectrum, (b) C 1s, (c) Ni 2p, (d) W 4f and (e) O 1s.

References

1. B. P. Payne, A. P. Grosvenor, M. C. Biesinger, B. A. Kobe and N. S. McIntyre, *Surface and Interface Analysis*, 2007, **39**, 582-592.

- 2. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson and R. S. C. Smart, *Applied Surface Science*, 2011, **257**, 2717-2730.
- 3. R. Kumar, K. Jahan, R. K. Nagarale and A. Sharma, *Industrial & Engineering Chemistry Research*, 2015, **54**, 10183-10189.
- 4. P. Veerakumar, V. Veeramani, S.-M. Chen, R. Madhu and S.-B. Liu, *ACS Applied Materials & Interfaces*, 2016, 8, 1319-1326.
- 5. R. Madhu, K. V. Sankar, S.-M. Chen and R. K. Selvan, *RSC Advances*, 2013, 4, 1225-1233.