Supporting Information

High Modulus Hydrogel Obtained from Hydrogen Bond Reconstruction and Application

in Vibration Damper

Longxiang Zhu^a, Jianhui Qiu^a*, Eiichi Sakai^a

^aDepartment of Machine Intelligence and Systems Engineering Faculty of Systems

Engineering, Akita Prefectural University, Akita, 015-0055, Japan.

Corresponding Author (J. Qiu) qiu@akita-pu.ac.jp

Figure S1 Relationship between output energy and luminous emittance.

Figure S2 Effect of output energy on mechanical properties of Gel-1.0. a) stress-strain curves;b) tensile strength; c) fracture elongation; d) elastic modulus of Gel-1.0 prepared with various output energy.

	Tensile strength (MPa)		Fracture elongation (%)		Elastic modulus (MPa)	
Hydrogel	Air	Vacuum	Air	Vacuum	Air	Vacuum
D-Gel-0	1.21±0.01	1.26±0.06	159.7±4.12	119.3±6.7	0.751±0.028	0.987±0.075
D-Gel-0.1	1.39±0.01	1.70±0.06	153.4±1.1	144±2.2	0.903 ± 0.010	1.138±0.097
D-Gel-0.5	1.55±0.06	1.74±0.04	150.2±10.8	129.0±2.7	1.017 ± 0.141	1.267 ± 0.049
D-Gel-1.0	1.50±0.12	1.73±0.05	122.7±4.9	107.6±3.5	1.222±0.056	1.450 ± 0.046
D-Gel-1.5	1.06±0.13	1.35±0.12	107.8±12.2	91.4±5.6	0.886±0.169	1.257±0.015

Table S1 Mechanical properties of HM-Gel at different evaporation conditions.

Figure S3 FT-IR spectra of CMC, PAA and HM-Gel-0.5.

Figure S4 a) Stress-strain curves of HM-Gels (evaporation in air) with various Al^{3+} content. b) Effective network chain density (*N*) of HM-Gel with various Al^{3+} content.

Figure S5 Dynamic mechanical analysis of Gel and HM-Gel. a) Storage modulus (E') and loss modulus (E''); b) Tan δ of Gel with various Al³⁺ content. c) Storage modulus (E') and loss modulus (E''); d) Tan δ of HM-Gel with various Al³⁺ content.

Supplementary Movie S1

This movie showed the free vibration of the test tube mixer without any vibration damper. The test tube mixer was beaten violently and made a huge noise.

Supplementary Movie S2

This movie shows the free vibration of the test tube mixer with HM-Gel as vibration damper.

The test tube mixer was running smoothly and no noise was emitted.