Size-tunable NaGdF₄ nanoparticles as T₂ contrast agents for high-field magnetic resonance imaging

Zhigao Lu,^{†,‡} Ruijun Deng,^{†,‡} Mingming Zhen,^{†,‡,*} Xue Li,^{†,‡} Toujun Zou,[†] Yue

Zhou,^{†,‡} Mirong Guan,[†] Ying Zhang,^{†,‡} Yuqing Wang,[§] Tong Yu,^{†,‡} Chunying Shu,^{†,‡} and Chunru Wang,^{†,‡,*}

[†]Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

[‡]University of Chinese Academy of Sciences, Beijing 100049, China.

[§]CAS key laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National center for nanoscience and Technology of china, NO.11 Zhongguanyuan Beiyitiao, Beijing,100190, china.

E-mail: crwang@iccas.ac.cn, zhenmm@iccas.ac.cn, Tel: 86-10-62652120;

Figure S1. TEM images of $NaGdF_4 NPs$, samples 1 (A) , samples 2 (B) , and

samples 3 (C).

Figure S2 Mass magnetization of different size of NaGdF₄@SiO₂ NPs obtained using

a SQUID magnetometer. red line: 120 nm, blue line 190 nm, black line 250 nm

Particle size (nm)	r ₁ /[Gd ³⁺](mM ⁻¹ S ⁻¹)		<i>r</i> ₂ /[Gd	³⁺](mM ⁻¹ S ⁻¹)	r_2/r_1	
	0.5 T	7 T	0.5 T	7 T	0.5 T	7 T
120	1.422	0.746	4.359	129.7	3.06	173.8
190	0.548	0.471	5.754	142.9	10.5	303.4
250	0.393	0.272	8.553	159.6	21.76	586.8

Table S1. r_1 and r_2 relaxivity and r_2/r_1 values of NaGdF₄@SiO₂ using 0.5 T and 7 T

MRI scanner.

0.5 T					7 T			
Particle size (nm)	r ₂ /[Gd ³⁺] (mM ⁻¹ S ⁻¹)	r ₂ /M (mg/ml) ⁻¹ S ⁻¹	r ₂ /NP (mM ⁻¹ S ⁻¹)	r_2/r_1	r ₂ /[Gd ³⁺] (mM ⁻¹ S ⁻¹)	r ₂ /M (mg/ml) ⁻¹ S ⁻¹	r ₂ /NP (mM ⁻¹ S ⁻¹)	r_2/r_1
120	4.359	17	5.2×107	3.06	129.7	512	1.56×10 ⁹	173.8
190	5.754	22	2.7×10 ⁸	10.5	142.9	558	6.81×10 ⁹	303.4
250	8.553	33	9.3×10 ⁸	21.76	159.6	623	1.73×10 ¹⁰	586.8

Table S2. r_2 relaxivity, r_2/M , r_2/NP and r_2/r_1 values of NaGdF₄@SiO₂ using 0.5 T and 7 T MRI scanner.

Relaxivity Calculation¹

The concentration of Gd^{3+} ions determined by ICP-MS in the stock solution was used to calculate the molecular mass of NaGdF₄ in the specimen using the tatio

 $m(Gd)/m(NaGdF_4) = 0.6137$

This was used to calculate the r_1/M (mass relaxivity) values

The NaGdF₄ NPs synthesized have Hexagonal closed pack (HCP)-crystal structure and the density of HCP NaGdF₄ 5.65g/cc was used to determine the mass of a NP, considering that the NPs are perfect spheres and their volume determined using

 $V = 4/3\pi R^3$ (where R is the radius of the NP)

Comparing the mass of single NP and the total mass determined from ICP-MS the total number of NPs (N) in the stock solution was determined and used to calculate the r_2 /NP (Nanoparticle relaxivity)

1. N. J. J. Johnson, W. Oakden, G. J. Stanisz, R. Scott Prosser and F. C. J. M. van Veggel, *Chem. Mater.*, 2011, **23**, 3714-3722.