Supporting information

Efficient mineralization of phenol by temperature-responsive

polyoxometalate catalyst under wet peroxide oxidation at lower

temperature

Yiming Li, Xueyan Zhang, Dan Zhang, Yue Li, Xiaohong Wang*, Shengtian Wang*

Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry,

Northeast Normal University, Changchun 130024, P. R. China. Tel.: 0086-431-85098531; Fax:

0086-431-85099759; E-mail address: wangxh665@nenu.edu.cn

Fig. S1 (a) The changes of phenol adsorption on PNIPAM (i) and C₁₆PW(O₂)₂/PNIPAM (ii); (b) The maximum adsorption amount of phenol per gram of PNIPAM in pure polymer and in C₁₆PW(O₂)₂/PNIPAM. Reaction conditions: PNIPAM (0.0084 g), C₁₆PW(O₂)₂/PNIPAM (0.01 g), phenol solution (0.72 mM, 5 mL), 25 °C.

Fig. S2 The DSC curve of $C_{16}PW(O_2)_2/PNIPAM$.

Fig. S3 The IR spectra of (a) C₁₆PW(O₂)₂, (b) C₁₆PW(O₂)₂/PNIPAM, and (c) C₁₆PW(O₂)₂/PNIPAM after the degradation of phenol.

Fig. S4 The DR-UV-vis spectra of (a) $C_{16}PW(O_2)_2/PNIPAM$, and (b) $C_{16}PW(O_2)_2/PNIPAM$ after the degradation of phenol

Fig. S5 ^{31}P MAS NMR spectrum of (a) $C_{16}PW(O_2)_2/PNIPAM$ before the reaction, and (b) $C_{16}PW(O_2)/PNIPAM \ after \ the \ reaction.$

Fig. S6 The SEM images of (a) fresh C₁₆PW(O₂)₂/PNIPAM, (b) C₁₆PW(O₂)₂/PNIPAM after the reaction, and (c) the EDAX spectrum of fresh C₁₆PW(O₂)₂/PNIPAM.

Fig. S7 The high performance liquid chromatography (HPLC) of intermediate products

Fig. S8 The high performance liquid chromatography (HPLC) of oxalic acid degradation under the same reaction conditions.

Catalyst	Phenol/Catal/H ₂ O ₂ (ppm/ppm/ppm)	Temperatu re/Irradiati on	Time	рН	Degradation efficiency (%)	TOC removal (%)	Ref.
TiO ₂ -CdS-gCNNSs	10 / 5000 / -	UV light	5 h	-	80	-	1
n(Fe)/n(Mn)-MOFs	1000 / 64 / 249.9	35 °C	3 h	6.2	90	-	2
CuCo@y-Al ₂ O ₃	4700 / 500 / 3400	45 °C	1 h	-	90	40.2	3
Nano-metallic particles	20 / 250 / 3400	Ultrasound power (500 W)	2 h	6.9	100	-	4
Fe ₃ O ₄ NPs	100 / 500 / 79.9	30 °C	4 h	2.0	89.52	-	5
rGO-Fe/MCM-41	100 / 100 / 340	25 °C	100 min	3.0	91	-	6
Zero-valent iron- assisted Fenton reaction	100 / 1000 / 1700	25 °C	10 min	2.5	100	80	7
CuWO ₄ /WO ₃	6.063 / 1000 / 340	Visible light	4 h	7.0	80	-	8
Co:Ni LDHs	100 / 4030 / 340	-	77.8 min	-	94	-	9
FeCu-ZSM-5 coating/PSSF	1000 / - / 4760	80 °C	7 h	2.0	99	62	10
Fe ₃ O ₄ /FeAl ₂ O ₄	35 / 3000 / 204	30 °C	10min	6.0	100	-	11
LaCuO ₃	940 / 5000 / 23800	30 °C	2 h	3.0	90	86	12
Sch-Mo	100 / 1000 / 499.8	25 °C	2 h	3.0	100	-	13
G/FePc	50 / 200 / 2451.4	Visible light	3 h	5.5	96	77.1	14
$\alpha\text{-}Fe_2O_3\text{-}Bi_2WO_6$	50 / 1000 / 102	UV light	2 h	5.5	95	70	15
$[C_{16}H_{33}(CH_3)_3N]_4H_2\\SiV_2W_{10}O_{40}$	50 / 3000 / 7820	25 °C	90 min	2.8	91.6	85.5	16

Table S1 The different performance for CWPO of phenol.

Number theoretical content (%) Formula Actual content (%) С Р W С Р W Ν Η Ν Η C₁₆PW(O₂)₂/PNIPAM (before) 5.21 0.38 0.29 5.92 1.03 5.27 0.34 0.25 5.97 1.02 C₁₆PW(O₂)₂/PNIPAM (after) 5.18 0.31 0.25 5.81 0.98

Table S2 Elemental composition of $C_{16}PW(O_2)_2/PNIPAM$ with the loading amount of 16.0 wt% $C_{16}PW(O_2)_2$

Scheme S1 The possible degradation of phenol in CWPO process using $C_{16}PW(O_2)_2/PNIPAM$ as catalyst

- 1 J. H. Yao, H. Chen, F. Jiang, Z. Y. Jiao, M. C. Jin, *J. Colloid Interf. Sci.*, 2017, **490**, 154-162.
- 2 Q. Sun, M. Liu, K. Y. Li, Y. T. Han, Y. Zuo, F. F. Chai, C. S. Song, G. L. Zhang, X. W. Guo, *Inorg. Chem. Front.*, 2016, 4, 144-153.
- Y. B. Li, A. Jawad, A. Khan, X. Y. Lu, Z. Q. Chen, W. D. Liu, G. C. Yin, *Chinese J. Catal.*, 2016, 37, 963-970.
- 4 J. W. Singh, J. K. Yang, Y. Y. Chang, *J. Environ. Manag.*, 2016, **175**, 60-66.
- 5 P. Xu, G. M. Zeng, D. L. Huang, L. Liu, C. Lai, M. Chen, *RSC Adv.*, 2014, **4**, 40828-40836.
- 6 Y. Wang, Y. G. Yu, C. L. Deng, J. G. Wang, B. T. Zhang, RSC Adv., 2015, 5, 103989-103998.
- 7 I. H. Yoon, G. Yoo, H. J. Hong, J. Kim, M. G. Kim, *Chemosphere*, 2016, **145**, 409-415.
- 8 H. H. Chen, X. Q. Xiong, L. L. Hao, X. Zhang, Y. M. Xu, *Appl. Surf. Sci.*, 2016, 389, 491-495.
- 9 S. A. Hosseini, M. Davodian, A. R. Abbasian, J. Taiwan Inst. Chem. E., 2017, 75, 97-104.
- S. S. Jiang, H. P. Zhang, Y. Yan, X. Y. Zhang, *Micropor. Mesopor. Mat.*, 2017, 240, 108-116.
- J. K. Wang, Z. H. Jiang, Y. J. Wang, Q. X. Xia, Z. P. Yao, *Appl. Surf. Sci.*, 2017, **409**, 358-366.
- 12 O. P. Tarana, A. B. Ayusheev, O. L. Ogorodnikova, Ig. P. Prosvirin, L. A. Isupova, V. N. Parmon, *Appl. Catal. B-Environ.*, 2016, **80**, 86-93.
- L. D. Liu, W. M. Wang, L. Liu, B. Yue, Y. X. Zhang, X. Q. Wu, H. W. Zhang, X. Hang, *Appl. Catal. B-Environ.*, 2016, **185**, 371-377.
- 14 Q. L. Wang, H. Y. Li, J. H. Yang, Q. Sun, Q. Y. Li, J. J. Yang, *Appl. Catal. B-Environ.*, 2016, 192, 182-192.
- 15 C. Jaramillo-Páez, J. A. Navío, M. C. Hidalgo, A. Bouzianib, M. E. Azzouzi, *J. Photoch. Photobio. A-Chem.*, 2017, **332**, 521-533.
- 16 H. C. Li, X. Yu, H. W. Zheng, Y. M. Li, X. H. Wang, M. X. Huo, *RSC Adv.*, 2014, 4, 7266-7274.