Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting information

Graphene/MnO₂ aerogel with both high compression-tolerant ability and high

capacitance for compressible all-solid-state supercapacitors

Peng Lv,* Xun Tang, Wei Wei

School of optoelectronic engineering, Nanjing University of Post & Telecommunications, Nanjing 210023, P. R China.

*Corresponding author: Email: lvp@njupt.edu.cn

Table 1 Mass contents and mass loadings of $Mn\mathrm{O}_2$ in graphene/Mn\mathrm{O}_2 aerogels with

Deposition time (min)	Mass content (wt%)	Mass loading (mg cm ⁻²)
5	11	0.4
10	25	1.2
20	46	3.0
30	68	7.0
40	83	17.1

various deposition time.

Fig. S1. SEM images of the cell walls of graphene aerogel (a) before and (b) after a

10-minute deposition process.

Fig. S2. SEM images of graphene/MnO₂ aerogel with the deposition time of (a, b) 5

min, (c, d) 10 min, (e, f) 20 min, (g, h) 30 min and (i, j) 40 min.

Fig. S3 (a) Nitrogen sorption isotherms and (b) pore size distribution of graphene aerogel and graphene/MnO₂ aerogel.

Fig. S4. X-ray diffraction (XRD) patterns of graphene/MnO₂ aerogel.

The two characteristic peaks at 37.1° and 66.3° in XRD analysis indicates the presence of MnO₂, and the weak, broad signals suggest that MnO₂ is amorphous nature, which is favorable for supercapacitor applications.

Fig. S5 Raman spectra of graphene aerogel and graphene/MnO $_2$ aerogel.

Fig. S6 Stress-strain curves of 1st, 10th, 100th and 1000th cycles of graphene aerogel

at a set strain of 90%.

Fig. S7 The variation of electrical resistance of graphene/MnO₂ aerogel coated by

 PVA/H_2SO_4 in the first 100 compression-releasing cycles.

The electrochemical characterization of individual electrodes was carried out in three-electrode system with 1 M H₂SO₄ aqueous electrolyte. The as-prepared aerogel, Pt wire and Ag/AgCl were used as working electrode, counter electrode and reference electrode, respectively. To prevent any extraneous contribution to the capacity, the aerogel electrode was prepared by threading with a Pt wire without any other additive.

The specific capacitance of the aerogel electrode (C_s) was calculated from the cyclic voltammetry (CV) curves by using the equation: $C_s = \int \frac{I}{m} dU/v\Delta U$, where *I* is the response current, *m* is the mass of the aerogels (including graphene and MnO₂), *v* is the potential scan rate, ΔU is the potential range.

Fig. S8 (a) CV curves of the graphene/MnO₂ aerogels deposited for 0, 5, 10, 20, 30, and 40 min at 10 mV s⁻¹; (b) the specific capacitances of the aerogels calculated from the CV curves in (a).

The microstructure of CC before and after the deposition of MnO₂ is shown in Fig.

S9. CC before the electrochemical deposition process shows a smooth surface (Fig. S9 a-c). After 30 min deposition of MnO₂, there are plenty of MnO₂ nanosheets coated on the surface of carbon fiber in CC. The specific capacitance of CC/MnO₂ was measured by cyclic voltammetry using a three-electrode system. CC/MnO₂ with MnO₂ mass loading of 4.2 mg cm⁻² shows a specific capacitance of 224 F g⁻¹ at 10 mV s⁻¹, which is lower than that of graphene/MnO₂ (398 F g⁻¹) with MnO₂ mass loading of 3.9 mg cm⁻². The relative high value of specific capacitance of graphene/MnO₂ is attributed to the unique characteristic of the graphene aerogel substrate: 1. The 3D network of graphene aerogel provides continuous conductive path for efficient electron transfer, thus reducing the internal resistance of the electrode; 2. Graphene aerogel provides larger surface area (72 m² g⁻¹) than that of CC $(20 \text{ m}^2 \text{ g}^{-1})$ for loading MnO₂. For the same mass loading, the thickness of MnO₂ on graphene cell walls is much lower than that on CC; 3. The interconnected macroporous structure of graphene aerogel favors the homogeneous deposition of MnO₂, avoiding the aggregation of MnO₂.

Fig. S9 SEM images with various magnifications of (a-c) CC and (d-f) CC/MnO₂.

Fig. S10 (a) Galvanostatic charge/discharge curves at various current densities from 1

to 5 A g^{-1} and (b) Ragone plot of a representative all-solid-state compressible supercapacitor.