Extended-Release of Opioids using Fentanyl-based

Polymeric Nanoparticles for Enhanced Pain Management

Marina Kovaliov,^{a,b} Shaohua Li,^{a,b} Emrullah Korkmaz,^c Devora Cohen-Karni,^{a,b} Nestor Tomycz,^b O. Burak Ozdoganlar,^{c,d,e} and Saadyah Averick^{*a,b}

^aNeuroscience Disruptive Research Lab, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, USA.

^bNeuroscience Institute, Allegheny Health Network, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212, USA.

^cDepartment of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA

^dDepartment of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA

^eDepartment of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, USA

¹H NMR spectra of fentanyl initiators

Figure S2. ¹H NMR spectrum of Fen-Br.

¹H NMR (500 MHz, $CDCl_3$)

Figure S3. ¹H NMR spectrum of Fen-Acry-EtOH.

Figure S4 Chromatographic profile of Fen-OH.

Figure S5 Chromatographic profile of Fen-Br.

Figure S6 Chromatographic profile of Fen-Acry-EtOH.

¹H NMR spectra of fentanyl polymers

Figure S7 ¹H NMR spectrum of Fen-PLGA.

Figure S8 ¹H NMR spectrum of Fen-Acry-PLGA.

GPC traces

Figure S9 GPC trace of Fen-PLGA.

Figure S10 GPC trace of Fen-Acry-PLGA.

DLS traces

Figure S11 Size distribution of Fen-PLA NPs measured by DLS.

Figure S12 Size distribution of Fen-PLGA NPs measured by DLS.

Figure S13 Size distribution of Fen-Acry-PLGA NPs measured by DLS.

Figure S14 Size distribution of Fen-OH-PLGA NPs measured by DLS.

Zeta potential

Figure S15 Intensity distribution of the zeta potential of Fen-PLA NPs.

Figure S16 Intensity distribution of the zeta potential of Fen-PGLA nanoparticles.

Figure S17 Intensity distribution of the zeta potential of Fen-Acry-PGLA nanoparticles.

ESEM images

Figure S18 ESEM images: (a) Fen-PLA, Fen-PLGA, Fen-Acry-PLGA.

In vivo activity

Figure S19 Hot plat test: each point shows the % of MPE induced by fentanyl at different concentrations.

Figure S20 The change in mouse weight throughout the testing period.

Dissolvable microneedle arrays (MNA)

Figure S21 Tip-loaded dissolvable MNAs created using the micromilling/elastomer molding/spin-casting technique for patient-friendly delivery of opioid biohybrids in skin: (a) Optical microscope images of the elastomer mold after tip loading with the NPs; and (b) bright field microscope images of the tip-loaded dissolvable MNAs along with merged bright field and fluorescence microscope image of the tip portion of the individual microneedle.