Copper-Catalyzed selective C-N Bond Formation with Unprotected 2-Amino, 2-Hydroxy and 2-Bromo-5-halopyridine

Swarnali Roy, ${ }^{[a, b]}$ Barnali Paul, ${ }^{[a, b]}$ Ayan Mukherjee, ${ }^{[a]}$ Biswajit Kundu, ${ }^{[a]}$ Arindam Talukdar, ${ }^{[a]}$
[a] Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700032, WB (India)
[b] Swarnali Roy and Barnali Paul contributed equally.

E mail: atalukdar@iicb.res.in

Table of Contents

Table of Contents	S1
Material and Methods	S2
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Spectral Data	S 10

General Methods (Compound 1-22). 2-Amino-5-iodo pyridine/2-Hydroxy-5-iodo pyridine (0.5 mmol), $\mathrm{CuI}(10 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ (3.0 equiv) was taken in a sealed tube. After purging it with nitrogen, dry isopropanol was added to it followed by addition of amine and ethylene glycol ($10 \mathrm{~mol} \%$). The reaction mixture was again flashed with nitrogen and then the tube was finally sealed under nitrogen atmosphere. The reaction mixture was heated to $110^{\circ} \mathrm{C}$ for $10-12$ hours. Formation of product was confirmed after checking the TLC. Then the reaction mixture was passed through celite bed using methanol. Product was purified by Flash chromatography using Methanol/ CHCl_{3} system.

5-Morpholinopyridin-2-amine, 1. Brown gummy solid, yield 87%. 1H NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.59$ (br s, 1H), $7.32(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.98(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 4 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 155.9,136.0,131.4,111.3,68.1,52.4$. HRMS (ESI): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$180.1138; found 180.1148 .

5-(4-Methylpiperazin-1-yl)pyridine-2-amine,2. Brown gummy solid, yield 92%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta 7.78(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{t}, J=$ $5.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.58(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.1,140.7,137.0$, 129.0, 109.3, 55.2, 50.8, 46.2. HRMS (ESI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$193.1454; found 193. 1458.

t-Butyl 4-(6-Aminopyridin-3-yl)piperazine-1-carboxylate, 3. Brown gummy solid, yield 85%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76$ (br s, 1H), $7.16(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{t}, J$ $=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.94(\mathrm{t}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.8,153.3,140.6$, 136.3, 130.4, 109.8, 80.1, 51.0, 28.5. HRMS (ESI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 279.1822$; found 279.1821.

N5-Benzylpyridine-2,5-diamine, 4. Brown gummy solid, yield 72%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.91(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4,26$ (s, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 151.3,139.3,137.6,132.2,128.8,127.7,127.5$ 125.5, 110.0, 49.5; HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3}[\mathrm{M}]^{+} 199.1109$; found 199.1095.

N5-(1-methylpiperidin-4-yl)pyridine-2,5-diamine 5. Yield 86%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{br} \mathrm{s},-\mathrm{NH}), 3.15-3.08$ $(\mathrm{m}, 1 \mathrm{H}), 2.79(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $151.5,136.3,134.5,126.2,109.7,54.6,51.2,46.3,32.8$; HRMS (EI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4}[M]^{+}$ 206.1531; found 206.1524.

5-(1H-Imidazol-1-yl)pyridin-2-amine 6. Brown gummy solid, yield $85 \%{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.07(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.67$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 160.7,141.9,137.3,133.9,129.8,126.0,120.6$, 110.4. HRMS (ESI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+} 161.0828$; found 161.0832 .

5-(1H-pyrazol-1-yl)pyridin-2-amine 7. Off white solid, yield 82%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.19$ (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 159.9,141.7,140.2$, 132.3, 129.3, 110.2, 108.2. HRMS (ESI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$183.0647; found 183.0643.

5-(1H-Indol-1-yl)pyridin-2-amine 8. Yellow gummy solid, yield 88%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.71 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (s, 1H), 7.24-7.16 (m, 4H), $6.69(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,136.8,135.4,129.0,128.3,122.5$, 121.2, 120.4, 110.2, 103.4; HRMS (EI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3}[\mathrm{M}]^{+}$209.0953; found 209.0950.

N-(6-Aminopyridin-3-yl)acetamide 9. Brown gummy solid, yield 76%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+1$ drop $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.85(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 171.7, 157.9, 140.4, 133.5, 127.1, 110.0, 23.3. HRMS (ESI): m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$174.0644; found 174.0645.

1-(6-Aminopyridin-3-yl)pyrrolidin-2-one 10. Brown gummy solid, yield 80%. ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}) $\delta 8.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=11.1 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 2.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.09(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 174.9, 156.2, 139.9, 132.3, 109.3, 64.2, 49.4, 32.5, 18.6. HRMS (EI): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}]^{+}$177.0902; found 177.0891.

N-(6-Aminopyridin-3-yl)benzamide 11. Yield 70%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+1$ drop $\mathrm{CD}_{3} \mathrm{OD}$) δ $8.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.86-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.49(\mathrm{~m}, 3 \mathrm{H}), 6.52(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 168.9, 158.2, 141.7, 135.8, 134.5, 132.9, 129.6, 128.5, 127.0, 109.9. HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}]^{+} 213.0902$; found 213.0888.

5-Morpholinopyridin-2-ol 12. Brown solid. M.p- $218{ }^{\circ} \mathrm{C}$. Yield 82%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.38(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{t}, J=4.5 \mathrm{~Hz}$, $4 \mathrm{H}), 2.87(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1,137.6,135.2,120.7,120.3,66.8$, 51.1; HRMS (EI): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+} 180.0899$; found 180.0897.

tert-Butyl 4-(6-hydroxypyridin-3-yl)piperazine-1-carboxylate 13. Green gummy solid. Yield $80 \% . \delta{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=6.6 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.82(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.5,141.7,138.2,134.4,120.6,106.9,80.0,50.8,28.3$; HRMS (EI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}]^{+}$279.1583; found 279.1583.

5-(Benzylamino)pyridin-2-ol 14. Brown gummy solid. Yield 72%. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}+1$ drop $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 7.25-7.23 (m, 3H), 7.19-7.17 (m, 2H), $7.13(\mathrm{dd}, J=6.6 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43-6.41(\mathrm{~m}, 2 \mathrm{H})$, $4.04(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}+1$ drop $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 160.8,138.0,135.9,132.1,128.4,127.24$, 127.21, 120.1, 113.3, 29.4. HRMS (EI): m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]+$ 200.0950; found 200.0946.

5-(1H-Imidazol-1-yl)pyridin-2-ol 15. White solid. M.p- $195{ }^{\circ} \mathrm{C}$ Yield $91 \% .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ +1 drop $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}+1$ drop $\mathrm{CD}_{3} \mathrm{OD}$) δ 163.1, 137.7, 135.9, 129.6, 128.9, 121.1, 119.7, 119.0. HRMS (EI): m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}]^{+} 161.0589$; found 161.0554.

5-(1H-indol-1-yl)pyridine-2-ol 16. Grey solid. M.p- $180^{\circ} \mathrm{C}$ (decomposed). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.78(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.68(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.7,128.9,128.0,122.9,121.4,120.8,109.9,104.0$. HRMS (EI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}]^{+} 210.0793$, found 210.0789.

1-(6-Hydroxypyridin-3-yl)pyrrolidin-2-one 17. Green solid. M.p- $180{ }^{\circ} \mathrm{C}$. Yield $84 \%{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dd}, J=7.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-$ $3.67(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.5$, 136.8, 126.7, 122.3, 120.0, 63.8, 48.6, 31.8, 17.9. HRMS (EI): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+} 178.0742$; found 178.0734.

1-(6-bromopyridin-3-yl)-4-methylpiperazine 18. Yellow gummy solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.20(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $145.5,137.1,129.8,126.7,124.6,53.7,47.2,45.2$. HRMS (ESI) Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BrN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 258.0430; found 258.0427 .

Tert-butyl 4-(6-bromopyridin-3-yl)piperazine-1-carboxylate 19. Light yellow solid. Mp- $140^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.59(\mathrm{t}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.14(\mathrm{t}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6,146.6$, 138.5, 131.4, 127.8, 126.2, 80.3, 48.6, 28.5. HRMS (EI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{2}[\mathrm{M}]^{+} 341.0739$; found 341.0746 .

2-bromo-5-(1H-imidazol-1-yl)pyridine 20. Yellow fluffy solid. Mp- $130^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.52(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,140.4$, 135.6, 133.5, 131.6, 131.5, 129.1, 118.1. HRMS (ESI) Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrN}_{3}[\mathrm{M}+\mathrm{H}]^{+}$223.9824, found 223.9824.

1-(6-bromopyridin-3-yl)-1H-indole 21. Yellow gummy solid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~s}, 1 \mathrm{H})$, $7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.64-6.55$
($\mathrm{m}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.7,136.7,130.5,126.9,126.1,121.9,119.8,119.7$, 119.3,118.9, 115.9, 111.2. HRMS (EI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrN}_{2}[\mathrm{M}]^{+} 271.9955$, found 271.9951.

1-(6-bromopyridin-3-yl)pyrrolidin-2-one 22. Yellow solid. Mp- $85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.41$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.58 (t, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.23-2.13 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.9,140.2,136.1,135.8$, 129.6, 127.9, 47.9, 32.3, 18.0. HRMS (ESI) Calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 242.9957$, found 242.9967.

t-Butyl 4-(4-oxo-3,4-dihydro-2H-pyrido[1,2-a]pyrimidin-7-yl)piperazine-1-carboxylate 24. t-Butyl 4-(6-aminopyridin-3-yl)piperazine-1-carboxylate (1 mmol) was mixed with methyl acrylate $(1.5 \mathrm{mmol})$ in hexafluoroisopropanol (1 mL) in a sealed tube and the mixture was heated to $70^{\circ} \mathrm{C}$ for 12 h . Formation of product was confirmed after checking the TLC. After completion of the reaction, solvents were evaporated and residue was purified by flash chromatography using $\mathrm{CHCl} \mathrm{l}_{3} / \mathrm{MeOH} / \mathrm{NH}_{3}$ system to provided purified compound 24 as brown gummy solid. Yield 87%. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45$ (dd, $J=6.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{t}, J$ $=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.98(\mathrm{t}, J=5.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.76-2.71(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $162.5,154.4,140.5,134.8,134.6,123.9,122.1,80.3,72.8,51.1,49.1,29.6,28.3,21.7$. HRMS (EI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}]^{+} 332.1848$; found 332.1854.

t-Butyl 4-(2-(2-(benzyloxy)-4-methoxyphenyl)imidazo[1,2-a]pyridin-6-yl)piperazine-1-carboxylate 25. 1-(2-(Benzyloxy)-4-methoxyphenyl)-2-bromoethanone ($0.54 \mathrm{mmol}, \mathbf{2 3}$), $4(0.36 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(1.08$ mmol) were taken in a round bottom flask and refluxed in dry acetone for 4 hours. Formation of product was confirmed after checking the TLC. After completion of the reaction, acetone was evaporated and the organic part was extracted using ethyl acetate. Flash chromatography using Methanol/ CHCl_{3} system provided purified compound 25 as brown gummy solid. Yield 83%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.32$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.00(\mathrm{dd}, J=9.6 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.60(\mathrm{~m}, 2 \mathrm{H})$, $5.19(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.97(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $160.3,156.9,154.7,141.6,141.1,139.6,136.9,129.6,128.8,128.3,127.9,121.8,117.0,115.9,112.4$, $112.3,105.4,100.0,80.2,70.7,55.6,50.9,28.6$. HRMS (ESI): m/z calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 515.2659; found 515.2664.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 1:

180.1148 is the $[\mathrm{M}+\mathrm{H}]^{+}$peak of $\mathbf{1} .258 .1121$ and 280.0950 are the $[\mathrm{M}+\mathrm{H}]^{+}$and $[\mathrm{M}+\mathrm{Na}]^{+}$peak of standard compound.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 2:

193.1458 is the $[\mathrm{M}+\mathrm{H}]^{+}$peak of $\mathbf{2}$ and 258.1132 and 289.0952 are the $[\mathrm{M}+\mathrm{H}]^{+}$and $[\mathrm{M}+\mathrm{Na}]^{+}$peak of standard compound.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 3:

279.1821 is the $[\mathrm{M}+\mathrm{H}]^{+}$peak of $\mathbf{3}$ and 323.1760 is the $[\mathrm{M}+\mathrm{H}]^{+}$peak of standard.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 4:

Mass Spectra of compound 4.

Mass Spectra of compound 5.

${ }^{1} \mathrm{H},{ }_{1}^{13} \mathrm{C}$ NMR and Mass spectra of Compound 6:

161.0832 is the $[\mathrm{M}+\mathrm{H}]^{+}$peak of $\mathbf{6}$ and 280.0950 is the $[\mathrm{M}+\mathrm{Na}]^{+}$peak of standard.
$\underline{{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}}$ NMR and Mass spectra of Compound 7:

161.0883 and 183.0643 are the $[\mathrm{M}+\mathrm{H}]^{+}$and $[\mathrm{M}+\mathrm{Na}]^{+}$peak of 7.258 .1134 and 280.0950 are the $[\mathrm{M}+\mathrm{H}]^{+}$ and $[\mathrm{M}+\mathrm{Na}]^{+}$peak of standard.

Mass Spectrum of 8 .

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 9:

152.0885 and 174.0645 are the $[\mathrm{M}+\mathrm{H}]^{+}$and $[\mathrm{M}+\mathrm{Na}]^{+}$peak of $\mathbf{9 . 2 5 8 . 0 9 9 9}$ and 280.0950 are the $[\mathrm{M}+\mathrm{H}]^{+}$ and $[\mathrm{M}+\mathrm{Na}]^{+}$peak of standard compound.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of compound 10:

Mass Spectrum of 10.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 11:

Mass Spectrum of 11.

Mass Spectrum of $\mathbf{1 2}$.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 13:

Mass Spectrum of 13.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 14:

Mass Spectrum of 14.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 15:

Mass Spectrum of $\mathbf{1 5}$.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 16:

Mass Spectrum of $\mathbf{1 6}$.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 17:

Mass Spectrum of $\mathbf{1 7}$.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of compound 18:

258.0427 is the $[\mathrm{M}+\mathrm{H}]^{+}$peak of 18. 364.0637 is the $[\mathrm{M}+\mathrm{Na}]^{+}$peak of standard.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 19:

Mass Spectrum of 19.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 20:

223.9824 is the $[\mathrm{M}+\mathrm{H}]^{+}$peak of $\mathbf{2 0} .330 .1219$ is the $[\mathrm{M}+\mathrm{H}]^{+}$and 352.1049 is $[\mathrm{M}+\mathrm{Na}]^{+}$peak of standard.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 21:

Mass Spectrum of 21.

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 22:

242.9967 is the $[\mathrm{M}+\mathrm{H}]^{+}$and 264.9735 is $[\mathrm{M}+\mathrm{Na}]^{+}$peak of $\mathbf{2 2} .330 .1219$ is the $[\mathrm{M}+\mathrm{H}]^{+}$and 352.1017 is $[\mathrm{M}+\mathrm{Na}]^{+}$peak of standard.

Mass Spectrum of 24.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectra of Compound 25:

515.2664 is the $[\mathrm{M}+\mathrm{H}]^{+}$peak of $\mathbf{2 5} .598 .3619$ is the $[\mathrm{M}+\mathrm{H}]^{+}$peak of standard.

