Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Free-radical initiated cascade methylation or

trideuteromethylation of isocyanides with dimethyl Sulfoxides

Rui Zhang[†]^a, Xiaoqian Shi[†]^a, Qinqin Yan^a, Zejiang Li^{*ab}, Zheng Wang^a, Haifei Yu^a, Xiaoke Wang^a, Jing Qi^{*a}, menglu Jiang^a

^aCollege of Chemistry & Environmental Science, Hebei University, Baoding, Hebei; ^bKey

Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Baoding,

Hebei, 071002, P. R. China

E-mail: lizejiang898@126.com; qijing634@126.com

General Inform	nation					1
Typical proced	lure					1
The modificati	on of the m	ethylation rea	action condition			2
Physical	data	and	references	for	the	following
products						3-14
Copies of the	¹ H NMR, ¹³ (C NMR				15-39

General Information

¹H and ¹³C NMR spectra were recorded on a Bruker advance III 600 spectrometer in CDCl₃ with TMS as internal standard. Mass spectra were determined on a Hewlett Packard 5988A spectrometer by direct inlet at 70 eV. High-resolution mass spectral analysis (HRMS) data were measured on a Bruker Apex II. Element analysis (EA) data were measured on a Vario EL. All products were identified by ¹H and ¹³C NMR, MS, HRMS. The starting materials were purchased from Energy, J&K Chemicals or Aldrich and used without further purification.

Typical procedure

(1) A mixture of isocyanides (1 equiv., 0.25 mmol), Iron(II) chloride (0.2 equiv., 0.05 mmol), Hydrogen peroxide (3 eq, 0.75 mmol) and DMSO (3 mL) was stirred at 25° C under nitrogen condition for 6 h in a sealed tube (15 mL). After the reaction finished, the mixture was extracted

with ethyl acetate and water, evaporated under vacuum and purified by column chromatography to afford the desired product.

(2) A mixture of isocyanides (1 equiv., 0.25 mmol), Iron(II) chloride (0.2 equiv., 0.05 mmol), Hydrogen peroxide (3 eq, 0.75 mmol) and DMSO- d^6 (1 mL) was stirred at 20 °C under nitrogen condition for 12 h in a sealed tube (15 mL). After the reaction finished, the mixture was extracted with ethyl acetate and water, evaporated under vacuum and purified by column chromatography to afford the desired product.

The modification of the methylation reaction condition

	NC + H ₃ 0	$C^{\text{FeCl}_2} \xrightarrow{\text{H}_2\text{O}_2} \text{FeCl}_2 \xrightarrow{\text{H}_2\text{O}_2} \xrightarrow{\text{H}_2} \xrightarrow{\text{H}_2$) CH ₃
Entry	Catalyst (equiv)	Hydrogen peroxide (30%), (equiv)	t/h	Yield (%) ^b
1	FeCl ₂ (0.5)	3	3	52
2	FeCl ₂ (0.5)	3	6	55
3	$FeCl_{2}(0.5)$	3	10	52
4 ^c	FeCl ₂ (0.5)	3	6	30
5^d	FeCl ₂ (0.5)	3	6	40
6 ^e	FeCl ₂ (0.5)	3	6	50
7	-	3	6	n. r.
8	$\operatorname{FeCl}_2(0.1)$	3	6	63
9	$\operatorname{FeCl}_2(0.2)$	3	6	70
10	$FeCl_2(0.3)$	3	6	55
11	$\operatorname{FeCl}_2(0.4)$	3	6	55
12	$FeCl_2(0.2)$	1	6	20
13	$FeCl_2(0.2)$	2	6	36
14	$FeCl_2(0.2)$	4	6	56
15 ^f	$FeCl_2(0.2)$	3	6	60
16	CoCl ₂ (0.2)	3	6	n. r.
17	NiCl ₂ (0.2)	3	6	n. r.
18	CuCl (0.2)	3	6	n. r.
19 ^g	$\operatorname{FeCl}_2(0.2)$	3	6	n. r.

20^{h} FeCl ₂ (0.2) 3 6 n. r.	20^{h}	$FeCl_{2}(0.2)$	3	6	n. r.
--	----------	-----------------	---	---	-------

^{*a*} Reaction conditions: 2-isocyano-5-methyl-1,1'-biphenyl (1 equiv., 0.25 mmol), DMSO (3 mL), 25 °C, N₂. ^{*b*} Isolated yields. ^{*c*} DMSO (1 mL). ^{*d*} DMSO (2 mL). ^{*e*} DMSO (4 mL). ^{*f*}50°C. ^{*g*}DMF(3 mL). ^{*h*}CH₃CN(3 mL). Physical data and references for the following products

All known compounds are determined by ¹H NMR and ¹³C NMR, MS analysis and compared with which were cited in the following references, and the new compounds were further confirmed by HRMS.

References:

1. Z. J. Li, F. H. Fan, J. Yang and Z.-Q. Liu, Org. Lett. 2014, 16, 3396.

2. Z. Xu, C. Yan and Z.-Q. Liu, Org. Lett. 2014, 16, 5670.

3. T. Xiao, L. Li, G. Lin, Q. Wang, P. Zhang, Z.-W. Mao and L. Zhou, *Green Chemistry*. 2014, **16**, 2418.

4. Q. Dai, J. Yu, X. Feng, Y. Jiang, H. Yang and J. Cheng, *Advanced Synthesis & Catalysis.* 2014, **356**, 3341.

5. R. Caporaso, S. Manna, S. Zinken, A. R. Kochnev, E. R. Lukyanenko, A. V. Kurkin and A. P. Antonchick, *Chem. Commun.* 2016, **52**, 12486.

6. Z.-J. Li, X. Cui, L. Niu, Y. Ren, M. Bian, X. Yang, B. Yang, Q.-Q. Yan and J. Zhao, *Adv. Synth. & Catal.* 2017, **359**, 246.

Physical data for the following products:

1. 6-methylphenanthridine

A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), m. p. 69-71 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.63 (d, J = 8.4 Hz, 1H), 8.54 (dd, J = 8.4, 1.2 Hz, 1H),

8.22 (dd, J = 7.8, 0.6 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.84 (ddd, J = 8.4, 7.2, 1.2 Hz,

1H), 7.72 – 7.68 (m, 2H), 7.63 – 7.61 (m, 1H), 3.05 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 158.8, 143.7, 132.6, 130.4, 129.4, 128.6, 127.3, 126.5,

126.3, 125.9, 123.8, 122.3, 121.9, 23.3.

MS(EI): m/z(%): 193(100.0), 178(14.3), 165(14.0).

2. 8-chloro-6-methylphenanthridine

A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), m. p. 105-107°C.

¹H NMR (600 MHz, CDCl₃): δ 8.50 (d, J = 9.0 Hz, 1H), 8.44 (d, J = 7.8 Hz, 1H), 8.14 (d, J = 1.8 Hz, 1H), 8.08 (dd, J = 7.8, 0.6 Hz, 1H), 7.75 (dd, J = 9.0, 2.4 Hz, 1H), 7.72 – 7.70 (m, 1H), 7.62 – 7.60 (m, 1H), 2.99 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 157.7, 143.6, 133.1, 130.9, 130.9, 129.5, 128.9, 126.8, 126.7, 125.8, 124.1, 123.1, 121.8, 23.2.

MS(EI): m/z(%): 230(4.9), 229(30.6), 228(16.7), 227(100.0), 192(9.4), 191(7.0), 190(6.2), 165(5.9).

3. 2,6-dimethylphenanthridine

A white soild after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), m. p. 69-71 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.61 (d, *J* = 8.4 Hz, 1H), 8.31 (s, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.81 (t, *J* = 8.4 Hz, 1H), 7.67 (t, *J* = 7.8 Hz, 1H), 7.53 (dd, *J* = 7.8, 1.8 Hz, 1H), 3.02 (s, 3H), 2.61 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 157.8, 142.0, 136.0, 132.3, 130.3, 130.2, 129.1, 127.1, 126.5, 126.0, 123.6, 122.3, 121.6, 23.3, 21.9.

MS(EI): *m/z*(%): 208(17.6), 207(100.0), 206(35.9), 192(6.9), 190(5.2), 165(8.1).

4. 2,6,8-trimethylphenanthridine

A white soild after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), m. p. 106-108 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.50 (d, J = 8.4 Hz, 1H), 8.28 (s, 1H), 7.97 – 7.96 (m, 2H), 7.65 (dd, J = 8.4, 1.8 Hz, 1H), 7.50 (dd, J = 8.4, 1.2 Hz, 1H), 3.00 (s, 3H), 2.60 (s, 6H).

¹³C NMR (150 MHz, CDCl₃): δ 157.5, 141.7, 137.0, 136.0, 131.9, 130.2, 129.8, 129.0, 126.1, 126.0, 123.7, 122.2, 121.4, 23.3, 21.9, 21.8

MS(EI): m/z(%): 222(16.8), 221(100.0), 220(37.1), 206(38.0).

5. 8-chloro-2,6-dimethylphenanthridine

A white soild after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), M. P.: 132-134°C.

¹H NMR (600 MHz, CDCl₃): δ 8.51 (dd, J = 8.4, 2.4 Hz, 1H), 8.22 (s, 1H), 8.13 (s, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 9.0, 1H), 7.53 (d, J = 7.8 Hz, 1H), 2.98 (s, 3H), 2.60 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 156.6, 142.0, 136.6, 133.0, 130.7, 130.7, 130.6, 129.2, 126.9, 125.8, 124.0, 122.9, 121.4, 23.2, 21.9.

HRMS (ESI, m/z): Calculated for C₁₅H₁₃ClN (M+H)⁺ 242.0731, found 242.0733.

6. 8-(tert-butyl)-2,6-dimethylphenanthridine

A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), m. p. 109-110°C.

¹H NMR (600 MHz, CDCl₃): δ 8.54 (d, J = 8.4 Hz, 1H), 8.29 (s, 1H), 8.14 (d, J = 1.8 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.90 (dd, J = 8.4, 1.8 Hz, 1H), 7.50 (dd, J = 8.4, 1.8 Hz, 1H), 3.04 (s, 3H), 2.61 (s, 3H), 1.48 (s, 9H).

¹³C NMR (150 MHz, CDCl₃): δ 157.9, 150.2, 141.8, 135.9, 130.2, 129.9, 128.9, 128.6, 125.9, 123.6, 122.1, 121.9, 121.4, 35.1, 31.4, 23.3, 21.9.

HRMS (ESI, m/z): Calculated for C₁₉H₂₂N (M+H)⁺264.1747, found 264.1751.

7. 2,6-dimethyl-8-phenylphenanthridine

A white soild after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), m. p. 118-120°C.

¹H NMR (600 MHz, CDCl₃): δ 8.66 (d, *J* = 9.0 Hz, 1H), 8.37 (d, *J* = 1.8 Hz, 1H), 8.33 (s, 1H), 8.06 (dd, *J* = 8.4, 1.2 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 7.2 Hz, 2H), 7.54 (t, *J* = 7.2 Hz, 3H), 7.44 (t, *J* = 7.2 Hz, 1H), 3.08 (s, 3H), 2.63 (s, 3H). ¹³C NMR (150 MHz, CDCl₃): δ 157.9, 142.0, 140.5, 140.0, 136.2, 131.4, 130.3, 129.5, 129.1, 129.0, 127.8, 127.4, 126.3, 124.6, 123.4, 122.9, 121.6, 23.3, 21.9. HRMS (ESI, m/z): Calculated for C₂₁H₁₈N (M+H)⁺ 284.1434, found 284.1438. 8. 2,4.6-trimethylphenanthridine

A white soild after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), m. p. 99-100 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.61 (d, J = 8.4 Hz, 1H), 8.19 (d, J = 8.4 Hz, 2H), 7.80 – 7.78 (m, 1H), 7.66 (t, J = 7.8 Hz, 1H), 7.41 (s, 1H), 3.04 (s, 3H), 2.84 (s, 3H), 2.57 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 156.2, 140.8, 136.8, 135.3, 132.6, 131.0, 129.8, 126.8, 126.3, 125.7, 123.4, 122.5, 119.4, 23.6, 21.8, 18.2.

HRMS (ESI, m/z): Calculated for C₁₆H₁₆N (M+H)⁺ 222.1277, found 222.1280.

9. 2-fluoro-6-methylphenanthridine

A yellow soild after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), m. p. 110-112°C.

¹H NMR (600 MHz, CDCl₃): δ 8.50 (d, *J* = 7.8 Hz, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 8.14 (dd, *J* = 10.2, 3.0 Hz, 1H), 8.08 (dd, *J* = 9.0, 6.0 Hz, 1H), 7.86 (t, J = 7.8 Hz, 1H), 7.74 (t, J = 7.8 Hz, 1H), 7.46 - 7.43 (m, 1H), 3.02 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 161.7, 160.1, 158.0, 140.6, 131.5 (d, *J* = 9.0 Hz), 130.5, 127.9, 126.6, 125.9, 125.0 (d, *J* = 9.0 Hz), 122.5, 117.4 (d, *J* = 24.0 Hz), 106.9 (d, *J* = 22.9 Hz), 23.3.

MS(EI): *m/z*(%): 211(100.0), 196(12.0), 183(17.0).

10. 2-chloro-6-methylphenanthridine

A white soild after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), m. p. 103-105 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.49 (d, *J* = 8.4 Hz, 1H), 8.44 (d, *J* = 1.2 Hz, 1H), 8.19 (d, *J* = 7.8 Hz, 1H), 8.00 (d, *J* = 9.0 Hz, 1H), 7.83 (t, *J* = 8.4 Hz, 1H), 7.72 – 7.70 (m, 1H), 7.62 (dd, *J* = 8.4, 2.4 Hz, 1H), 3.00 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 159.1, 142.1, 132.1, 131.5, 130.8, 130.7, 129.0, 127.9, 126.5, 126.0, 124.8, 122.3, 121.6, 23.3.

MS(EI): *m/z*(%): 230(4.9), 229(30.7), 228(17.6), 227(100.0), 192(7.5), 191(6.5), 190(6.1), 165(6.2).

13. ethyl 1-methyl-4-phenylisoquinoline-3-carboxylate

A white soild after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1), m. p. 104-106°C.

¹H NMR (600 MHz, CDCl₃): δ 8.20 (d, J = 8.4 Hz, 1H), 7.67 (ddd, J = 8.4, 5.4, 3.0 Hz, 1H), 7.65 – 7.62 (m, 2H), 7.49 – 7.43 (m, 3H), 7.34 (dd, J = 7.8, 1.8 Hz, 2H), 4.11 (q, J = 7.2 Hz, 2H), 3.06 (s, 3H), 0.97 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 167.6, 158.4, 141.4, 136.4, 135.4, 131.9, 130.4, 129.9, 128.1, 128.0, 127.8, 127.7, 126.9, 125.6, 61.2, 22.6, 13.6.

HRMS (ESI, m/z): Calculated for C₁₉H₁₈NO₂ (M+H)⁺ 292.1332, found 292.1331.

14. ethyl 1,7-dimethyl-4-(p-tolyl)isoquinoline-3-carboxylate

A light yellow liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹H NMR (600 MHz, CDCl₃): δ 7.95 (s, 1H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.45 (dd, *J* = 9.0, 1.2 Hz, 1H), 7.27 (d, *J* = 7.8 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 3.02 (s, 3H), 2.57 (s, 3H), 2.45 (s, 3H), 1.02 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 167.7, 157.4, 140.6, 138.2, 137.3, 133.7, 133.5, 132.4, 132.0, 129.8, 128.8, 128.0, 126.8, 124.6, 61.1, 22.6, 21.9, 21.3, 13.7.

HRMS (ESI, m/z): Calculated for C₂₁H₂₂NO₂ (M+H)⁺ 320.1645, found 320.1644.

15. ethyl 7-fluoro-4-(4-fluorophenyl)-1-methylisoquinoline-3-carboxylate

A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1), m. p. 130-132°C.

¹H NMR (600 MHz, CDCl₃): δ 7.79 (dd, J = 9.6, 2.4 Hz, 1H), 7.61 (dd, J = 9.0, 5.4 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.31 – 7.28 (m, 2H), 7.18 (t, J = 8.4 Hz, 2H), 4.15 (q, J = 7.2 Hz, 2H), 3.01 (s, 3H), 1.04 (t, J = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 167.2, 162.1 (dd, *J* = 246.2, 162.6 Hz), 157.9, 141.1, 132.6, 131.9 (d, *J* = 3.6 Hz), 131.5 (d, *J* = 8.1 Hz), 130.8, 129.7 (d, *J* = 8.7 Hz), 129.0

(d, *J* = 8.3 Hz), 120.8 (d, *J* = 24.6 Hz), 115.3 (d, *J* = 21.5 Hz), 109.5 (d, *J* = 21.1 Hz), 61.4, 22.6, 13.8.

HRMS (ESI, m/z): Calculated for C₁₉H₁₆F₂NO₂ (M+H)⁺ 328.1144, found 328.1146.

16. ethyl 7-chloro-4-(4-chlorophenyl)-1-methylisoquinoline-3-carboxylate

A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1), m. p. 106-108°C.

¹H NMR (600 MHz, CDCl₃): δ 8.18 (d, *J* = 1.8 Hz, 1H), 7.59 (dd, *J* = 9.0, 2.4 Hz, 1H), 7.53 (d, *J* = 9.0 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 7.8 Hz, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.03 (s, 3H), 1.06 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 167.0, 158.0, 141.5, 134.5, 134.3, 134.2, 133.7, 131.5, 131.2, 130.6, 128.6, 128.4, 124.8, 61.5, 22.6, 13.7.

HRMS (ESI, m/z): Calculated for C₁₉H₁₆Cl₂NO₂ (M+H)⁺ 360.0553, found 360.0554.

17. A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), m. p. 75-76°C.

¹H NMR (600 MHz, CDCl₃): δ 8.63 (d, *J* = 8.4 Hz, 1H), 8.54 (d, *J* = 7.8 Hz, 1H), 8.22 (d, *J* = 8.4 Hz, 1H), 8.10 (d, *J* = 8.4 Hz, 1H), 7.86 – 7.83 (m, 1H), 7.71 (td, *J* = 8.4, 1.2 Hz, 2H), 7.64 – 7.61 (m, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 158.8, 143.8, 132.6, 130.4, 129.4, 128.6, 127.3, 126.5, 126.3, 125.9, 123.8, 122.3, 121.9, 23.0 – 22.6 (m).

HRMS (ESI, m/z): Calculated for C₁₄H₉D₃N (M+H)⁺ 197.1199, found 197.1192.

18. A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 10/1), m. p. 78-79°C.

¹H NMR (600 MHz, CDCl₃): δ 8.61 (d, J = 8.4 Hz, 1H), 8.32 (s, 1H), 8.20 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 7.8 Hz, 1H), 7.83 – 7.80 (m, 1H), 7.68 (t, J = 7.8 Hz, 1H), 7.53 (dd, J = 8.4, 1.8 Hz, 1H), 2.61 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 157.8, 142.0, 136.1, 132.4, 130.3, 130.2, 129.1, 127.1, 126.5, 126.0, 123.6, 122.3, 121.6, 23.0 – 22.5 (m), 21.9.

HRMS (ESI, m/z): Calculated for C₁₅H₁₁D₃N (M+H)⁺ 211.1356, found 211.1358.

19. A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1), m. p. 135-137 °C.

¹H NMR (600 MHz, CDCl₃): δ 8.49 (d, *J* = 8.4 Hz, 1H), 8.21 (s, 1H), 8.11 (d, *J* = 1.2 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 9.0 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 2.59 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 156.6, 141.9, 136.6, 132.9, 130.7, 130.6, 129.2, 126.8, 125.8, 124.0, 122.9, 121.4, 23.0 – 22.5 (m), 21.9.

HRMS (ESI, m/z): Calculated for C₁₅H₁₀D₃ClN (M+H)⁺ 245.0919, found 245.0920.

20. A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1), m. p. 110-112°C.

¹H NMR (600 MHz, CDCl₃): δ 8.54 (d, *J* = 9.0 Hz, 1H), 8.29 (s, 1H), 8.14 (s, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.90 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 2.61 (s, 3H), 1.48 (s, 9H).

¹³C NMR (150 MHz, CDCl₃): δ 157.8, 150.1, 141.8, 135.9, 130.1, 129.9, 128.9, 128.6, 125.9, 123.6, 122.1, 121.9, 121.4, 35.1, 31.3, 23.0 – 22.6 (m), 21.9.

HRMS (ESI, m/z): Calculated for C₁₉H₁₉D₃N (M+H)⁺ 267.1935, found 267.1932.

21. A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹H NMR (600 MHz, CDCl₃): δ 8.66 (d, J = 8.4 Hz, 1H), 8.36 (s, 1H), 8.33 (s, 1H), 8.06 (dd, J = 8.4, 1.8 Hz, 1H), 8.00 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 7.8 Hz, 2H), 7.54 (t, J = 7.8 Hz, 3H), 7.44 (t, J = 7.2 Hz, 1H), 2.63 (s, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 157.8, 142.0, 140.5, 140.0, 136.2, 131.4, 130.3, 129.5, 129.1, 129.0, 127.8, 127.4, 126.4, 124.6, 123.4, 122.9, 121.6, 21.9.

HRMS (ESI, m/z): Calculated for C₂₁H₁₅D₃N (M+H)⁺ 287.1669, found 287.1667.

22. A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1), m. p. 124-126°C.

¹H NMR (600 MHz, CDCl₃): δ 8.49 (d, *J* = 8.4 Hz, 1H), 8.22 (d, *J* = 7.8 Hz, 1H), 8.13 (dd, *J* = 9.6, 2.4 Hz, 1H), 8.08 (dd, *J* = 9.0, 5.4 Hz, 1H), 7.86 – 7.84 (m, 1H), 7.75 – 7.72 (m, 1H), 7.44 (td, *J* = 8.4, 2.4 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 160.9 (d, J = 244.3 Hz), 158.0, 140.6, 132.0, 131.5 (d, J = 9.0 Hz), 130.5, 127.9, 126.6, 126.0, 125.0 (d, J = 9.2 Hz), 122.5, 117.4 (d, J = 24.0 Hz), 106.9 (d, J = 23.1 Hz).

HRMS (ESI, m/z): Calculated for C₁₄H₈D₃FN (M+H)⁺ 215.1105, found 215.1099.

23. A white solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1), m. p. 109-111°C.

¹H NMR (600 MHz, CDCl₃): δ 8.52 (d, *J* = 8.4 Hz, 1H), 8.47 (d, *J* = 2.4 Hz, 1H), 8.21 (d, *J* = 8.4 Hz, 1H), 8.01 (d, *J* = 9.0 Hz, 1H), 7.86 – 7.84 (m, 1H), 7.74 – 7.71 (m, 1H), 7.64 (dd, *J* = 8.4, 2.4 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃): δ 159.1, 142.1, 132.1, 131.5, 130.8, 130.7, 129.0, 127.9, 126.6, 126.0, 124.8, 122.3, 121.6, 23.2 – 22.6 (m).

HRMS (ESI, m/z): Calculated for C₁₄H₈D₃ClN (M+H)⁺ 231.0809, found 231.0807.

24. A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1), m. p. 108-110°C.

¹H NMR (600 MHz, CDCl₃): δ 8.20 (d, *J* = 8.4 Hz, 1H), 7.69 – 7.66 (m, 1H), 7.65 – 7.63 (m, 2H), 7.49 – 7.44 (m, 3H), 7.34 (dd, *J* = 7.8, 1.8 Hz, 2H), 4.11 (q, *J* = 7.2 Hz, 2H), 0.97 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 167.6, 158.4, 141.5, 136.4, 135.4, 131.9, 130.4, 130.0, 128.1, 128.1, 127.9, 127.8, 126.9, 125.6, 61.2, 22.1 – 21.7 (m), 13.6.

HRMS (ESI, m/z): Calculated for C₁₉H₁₅D₃NO₂ (M+H)⁺ 295.1567, found 295.1565.

25. A light yellow liquid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1).

¹H NMR (600 MHz, CDCl₃): δ 7.94 (s, 1H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.45 (d, *J* = 8.4 Hz, 1H), 7.27 (d, *J* = 7.8 Hz, 2H), 7.21 (d, *J* = 7.8 Hz, 2H), 4.14 (q, *J* = 7.2 Hz, 2H), 2.57 (s, 3H), 2.45 (s, 3H), 1.02 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 167.7, 157.3, 140.6, 138.2, 137.3, 133.7, 133.5, 132.4, 132.0, 129.8, 128.7, 128.0, 126.8, 124.6, 61.1, 21.9, 21.3, 13.7.

HRMS (ESI, m/z): Calculated for C₂₁H₁₉D₃NO₂ (M+H)⁺ 323.1880, found 323.1875.

26. A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1), m. p. 138-140 °C.

¹H NMR (600 MHz, CDCl₃): δ 7.79 (dd, *J* = 9.6, 2.4 Hz, 1H), 7.62 (dd, *J* = 9.6, 5.4 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.31 – 7.28 (m, 2H), 7.18 (t, *J* = 8.4 Hz, 2H), 4.15 (q, *J* = 7.2 Hz, 2H), 1.05 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 167.2, 162.1 (dd, *J* = 246.2, 162.6 Hz), 157.9, 141.2, 132.6, 131.9 (d, *J* = 3.6 Hz), 131.6 (d, *J* = 8.1 Hz), 130.8, 129.7 (d, *J* = 8.7 Hz), 129.0 (d, *J* = 8.3 Hz), 120.8 (d, *J* = 24.6 Hz), 115.3 (d, *J* = 21.5 Hz), 109.5 (d, *J* = 21.1 Hz), 61.4, 22.1-21.9 (m), 13.8.

HRMS (ESI, m/z): Calculated for $C_{19}H_{13}D_3F_2NO_2$ (M+H)⁺ 331.1378, found 331.1375.

27. A light yellow solid after purification by flash column chromatography (petroleum ether/ethyl acetate = 5/1), m. p. 107-109°C.

¹H NMR (600 MHz, CDCl₃): δ 8.18 (d, *J* = 1.8 Hz, 1H), 7.59 (dd, *J* = 9.0, 1.8 Hz, 1H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.47 (d, *J* = 7.8 Hz, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 4.16 (q, *J* = 7.2 Hz, 2H), 1.06 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃): δ 166.9, 157.9, 141.6, 134.5, 134.4, 134.3, 133.7, 131.5, 131.2, 130.6, 128.6, 128.4, 124.8, 61.5, 13.8.

HRMS (ESI, m/z): Calculated for $C_{19}H_{13}D_3Cl_2NO_2$ (M+H)⁺ 363.0787, found 363.0785.

Copies of the ¹H NMR, ¹³C NMR

$5^{-1}HNMR$

32

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

-3000 -2000 -1000

