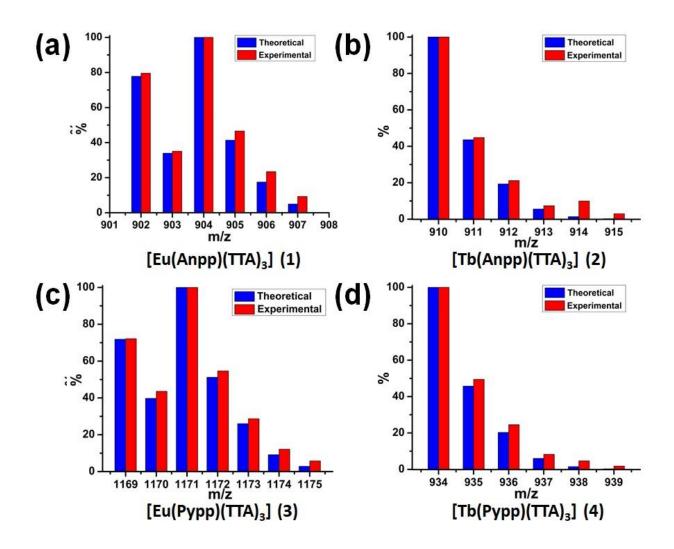
Electronic Supplementary Information (ESI)

Ternary Eu(III) and Tb(III) β -diketonate Complexes Containing Chalcones: Photophysical Studies and Biological outlook


Zafar Abbas, Srikanth Dasari, Ashis K. Patra*

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.

Table of Contents	Page No.
Figure S1: ESI Mass spectra showing isotopic distribution for (a) complex	S5
1 , (b) complex 2 , (c) complex 3 and (d) complex 4 .	
Figure S2: UV-visible absorption spectra of the ligands in DMF.	S6
Figure S3: Time delayed luminescence spectra of complexes 3 and 4.	S7
Figure S4: Time-dependent UV-visible spectral changes of (a) complex 1,	
(b) complex 2 , complex 3 and complex 4 in DMF.	S8
Figure S5: Luminescence decay profile and lifetime measurement of complexes 1 (a), 2 (b), 3 (c) and 4 (d) in DMF	S9
Figure S6: . Luminescence decay profile and lifetime measurement of complexes 1 (a), 2 (b), 3 (c) and 4 (d) in H ₂ O and D ₂ O.	S10
Figure S7: Unit cell packing diagram of complex 3 .	611
Table S1: Selected bond lengths (Å) and bond angles (deg) for	S11
$[Eu(Pypp)(TTA)_3] (3).$	S12
DNA Binding studies	
Figure S8: Absorption spectral traces of complex 2 in Tris-buffer with increasing the concentration of CT-DNA.	S13
Figure S9: Absorption spectral traces of complex 3 in Tris-buffer with increasing the concentration of CT-DNA.	S14
Figure S10: Absorption spectral traces of complex 4 in Tris-buffer with increasing the concentration of CT-DNA.	S15
Figure S11: Emission spectral traces of ethidium bromide bound CT-DNA with varying concentration of complex 2 in 5 mM Tris buffer.	S16
Figure S12: Emission spectral traces of ethidium bromide bound CT-DNA with varying concentration of complex 3 in 5 mM Tris buffer.	S17
Figure S13: Emission spectral traces of ethidium bromide bound CT-DNA with varying concentration of complex 4 in 5 mM Tris buffer.	S18
Serum Albumin Binding Studies	

Figure S14: Emission spectral traces of human serum albumin (HSA) protein	S19
in presence of increasing concentration of complex 2.	
Figure S15: Emission spectral traces of human serum albumin (HSA) protein	S20
in presence of increasing concentration of complex 3 .	
Figure S16: Emission spectral traces of human serum albumin (HSA) protein	S21
in presence of increasing concentration of complex 4.	~
Synchronous Emission Studies	
Figure S17: Synchronous emission spectral traces of human serum albumin	S22
(HSA) with increasing concentration of complex 2 at (a) $\Delta\lambda = 60$ nm (b) $\Delta\lambda =$	
15 nm.	
Figure S18: Synchronous emission spectral traces of human serum albumin	S23
(HSA) with increasing concentration of complex 3 at (a) $\Delta\lambda = 60$ nm (b)	
$\Delta\lambda$ =15 nm.	
Figure S19: Synchronous emission spectral traces of human serum albumin	S24
(HSA) with increasing concentration of complex 4 at (a) $\Delta\lambda = 60$ nm (b) $\Delta\lambda =$	
15 nm.	
DNA Photocleavage studies	
Figure S20: Gel electrophoresis diagram showing photocleavage of SC	S25
pUC19 DNA with complexes 1 and 3 on irradiation with UV-A light of 365	
nm with varying exposure time.	
Figure S21: Gel electrophoresis diagram showing photocleavage of SC	S26
pUC19 DNA with complexes 2 and 4 on irradiation with UV-A light of 365	
nm with varying exposure time.	
Figure S22: Gel electrophoresis diagram showing photocleavage of SC	S27
pUC19 DNA by complexes 1 in presence of various additives.	
Figure S23: Gel electrophoresis diagram showing photocleavage of SC	S29

pUC19 DNA by complexes 2 in presence of various additives.		
Figure S24: Gel electrophoresis diagram showing photocleavage of SC	S29	
pUC19 DNA by complexes 3 in presence of various additives.		
Figure S25: Gel electrophoresis diagram showing photocleavage of SC	S30	
pUC19 DNA by complexes 4 in presence of various additives.		
Figure S26: Bar diagram showing photocleavage of SC pUC19 DNA by	S31	
complexes 2 and 4 in presence of various additives.		
Figure S27: Time delayed luminescence spectra of Complex 1 with	S32	
increasing concentration of CT-DNA	50-	

Figure S1. ESI-MS spectra with isotopic distribution for the parent ion peak of (a) Complex **1**, (b) Complex **2**, (c) Complex **3** and (d) Complex **4** in DMF.

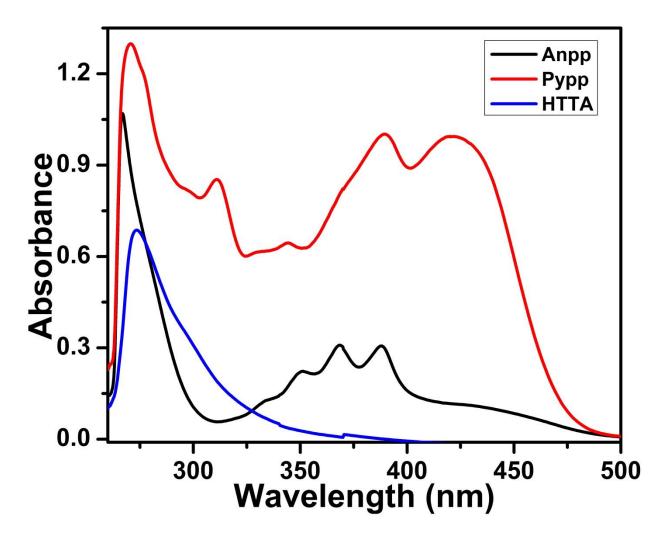
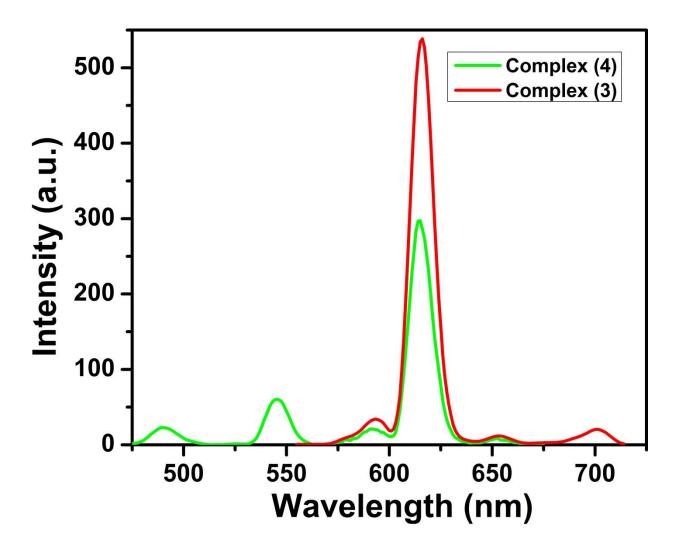
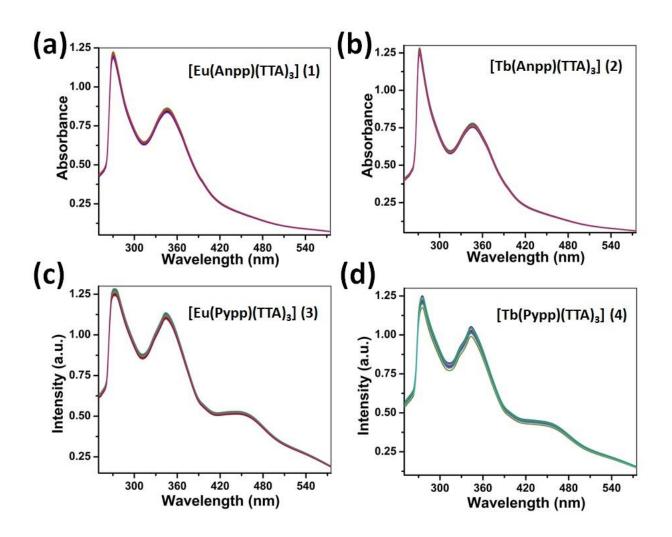
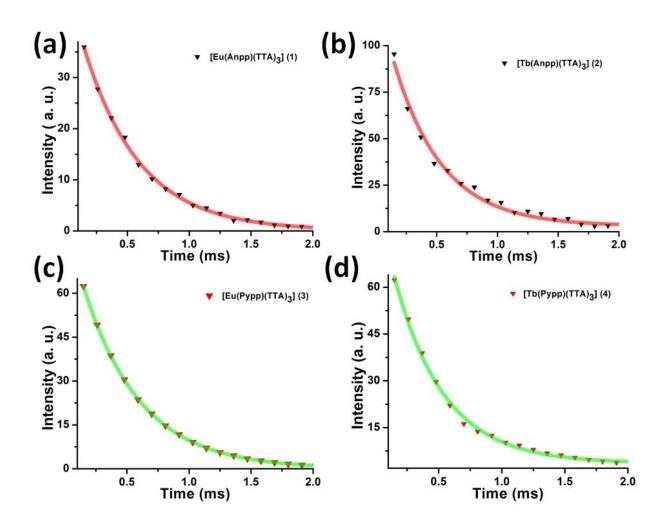
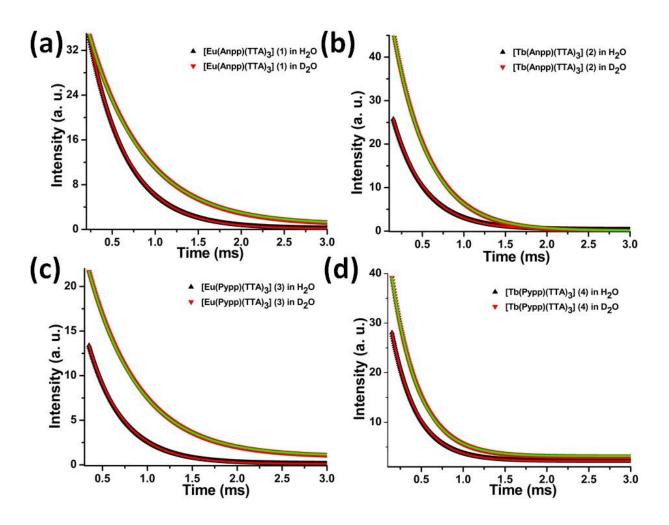



Figure S2. UV-Vis absorption spectral traces of chalcones and TTA ligands in DMF at 298 K.

Figure S3. Time-delayed luminescence spectra for complexes **3** and **4** (20 μ M each) in DMF at 298 K [delay time = 0.1 ms, gate time =0.1 ms, λ ex = 340 nm, slit width = 10 nm].

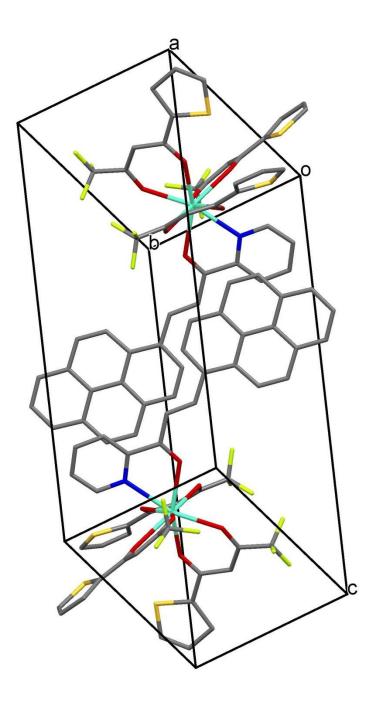
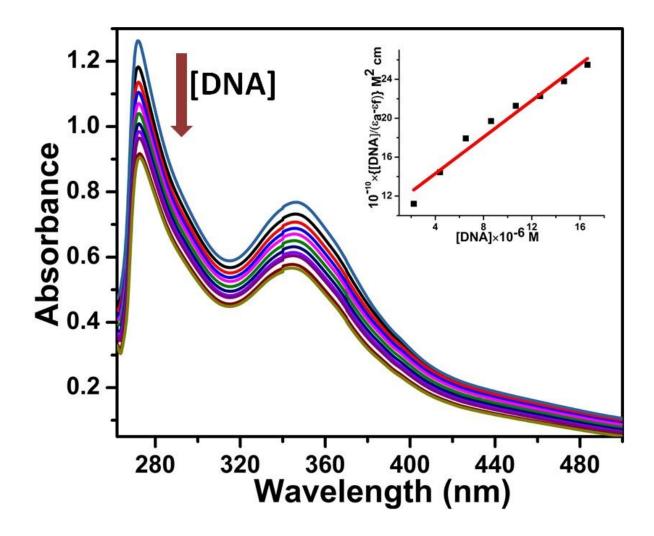
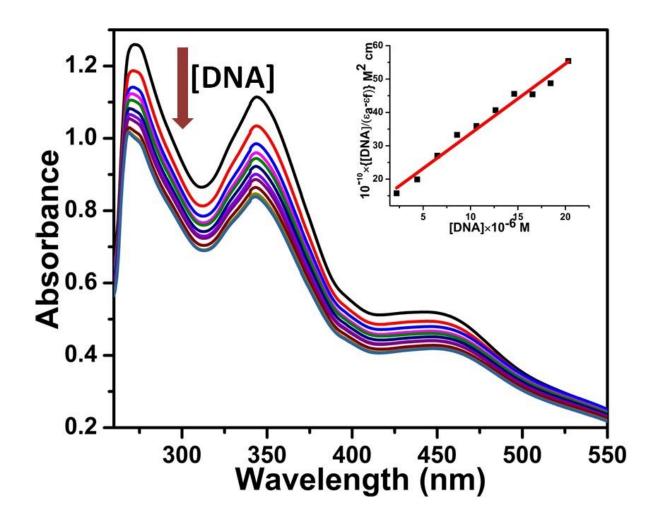
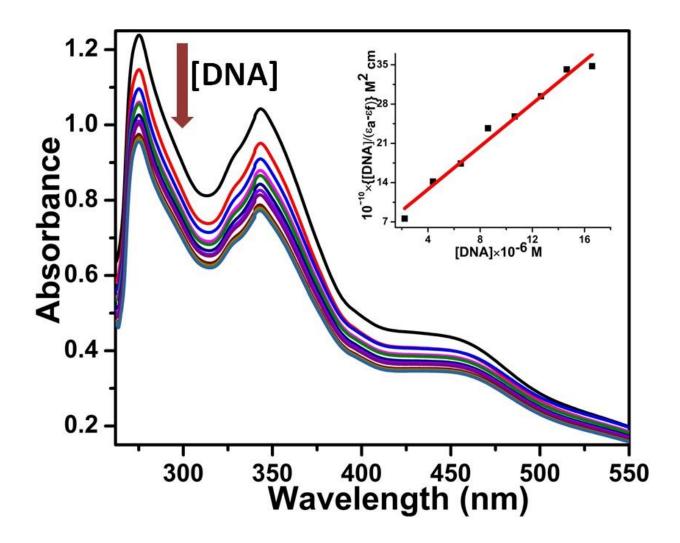

Figure S4. Time-dependent absorption spectral traces of (a) complex 1, (b) Complex 2, Complex3 and Complex 4 recorded for 4 h in DMF at 298 K to access the stability of the complexes in solution.

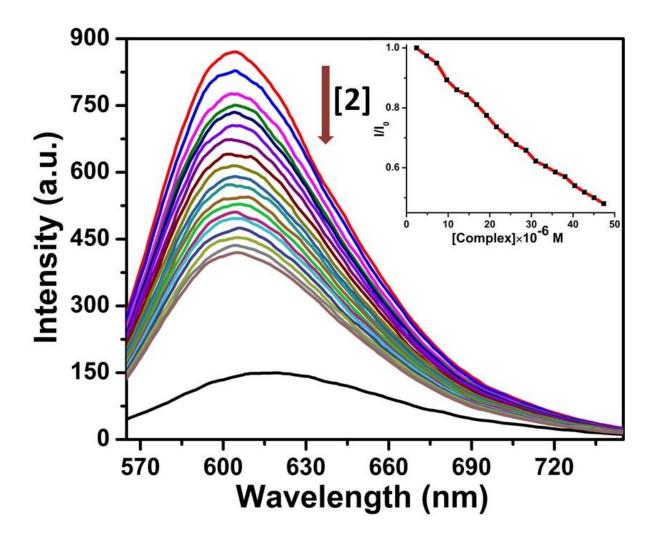
Figure S5. Luminescence decay profile from ${}^{5}D_{0}$ and ${}^{5}D_{4}$ states and lifetime measurement at 616 nm and 545 nm for Eu³⁺ and Tb³⁺ in complexes **1** (a), **2** (b), **3** (c) and **4** (d) respectively in DMF under ambient condition at 298 K. $\lambda_{ex} = 340$ nm, delay time and gate time = 0.1 ms, total decay time = 3.0 ms, slit width = 10 nm.

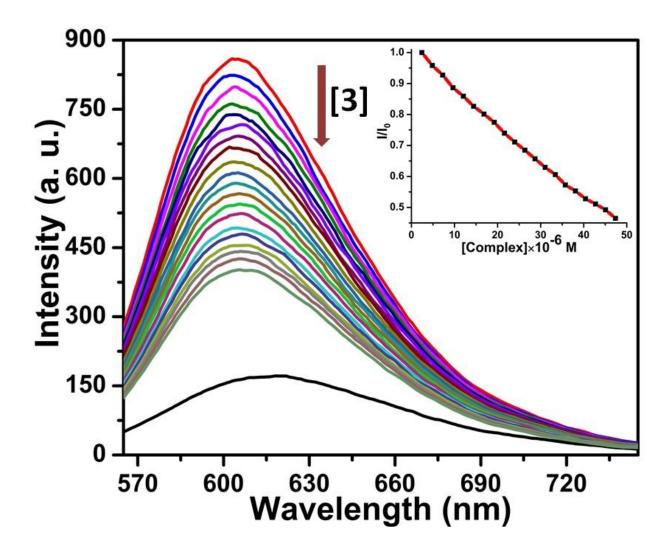

Figure S6. Luminescence lifetime measurements from the decay profile of ${}^{5}D_{0}$ and ${}^{5}D_{4}$ excited states at 616 nm and 545 nm for complexes **1** (a), **2** (b), **3** (c) and **4** (d) respectively in H₂O and D₂O under ambient condition at 298 K. The solid lines are mono exponential fittings in H₂O and D₂O respectively. $\lambda_{ex} = 340$ nm, delay time = 0.1 ms and gate time = 0.1 ms, slit width = 10 nm, total decay time = 3 ms.

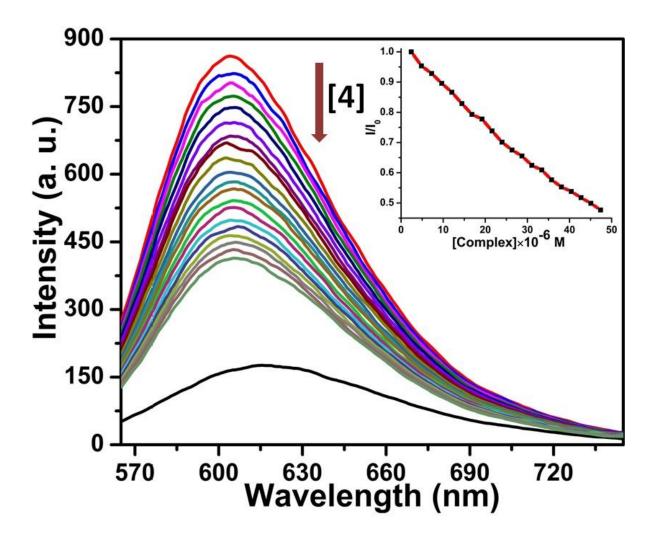

Figure S7. Unit cell packing diagram of complex **3** viewed along b-axis.

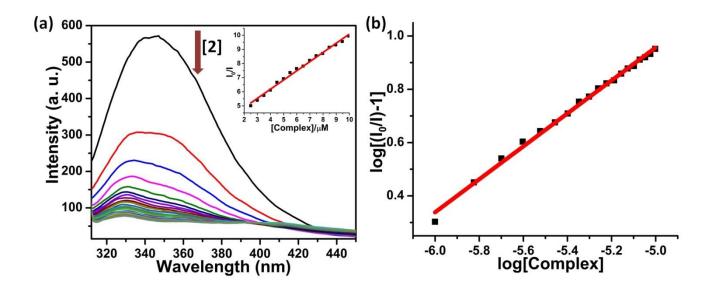
Bond length (Å)	
Eu(1)-N(1)	2.608(6)
Eu(1)-O(1)	2.453(5)
Eu(1)-O(2)	2.356(6)
Eu(1)-O(3)	2.357(5)
Eu(1)-O(4)	2.375(6)
Eu(1)-O(5)	2.360(5)
Eu(1)-O(6)	2.357(5)
Eu(1)-O(7)	2.349(5)
Bond angle (deg)	
O(1)-Eu(1)-N(1)	62.43(18)
O(2)-Eu(1)-N(1)	81.4(2)
O(3)-Eu(1)-N(1)	74.44(19)
O(4)-Eu(1)-N(1)	154.2(2)
O(5)-Eu(1)-N(1)	133.86(19)
O(6)-Eu(1)-N(1)	107.94(19)
O(7)-Eu(1)-N(1)	72.06(19)
O(2)-Eu(1)-O(1)	76.34(18)
O(3)-Eu(1)-O(1)	129.02(18)
O(4)-Eu(1)-O(1)	95.94(19)
O(5)-Eu(1)-O(1)	158.25(19)
O(6)-Eu(1)-O(1)	72.44(18)
O(7)-Eu(1)-O(1)	107.64(18)
O(3)-Eu(1)-O(2)	71.36(18)
O(4)-Eu(1)-O(2)	79.7(2)
O(5)-Eu(1)-O(2)	116.6(2)
O(6)-Eu(1)-O(2)	137.44(19)
O(7)-Eu(1)-O(2)	146.39(19)
O(4)-Eu(1)-O(3)	115.29(19)
O(5)-Eu(1)-O(3)	72.73(19)
O(6)-Eu(1)-O(3)	151.04(19)
O(7)-Eu(1)-O(3)	81.72(19)
O(5)-Eu(1)-O(4)	71.02(19)
O(6)-Eu(1)-O(4)	75.6(2)
O(7)-Eu(1)-O(4)	131.3(2)
O(6)-Eu(1)-O(5)	87.18(19)
O(7)-Eu(1)-O(5)	71.90(19)
O(7)-Eu(1)-O(6)	72.15(19)

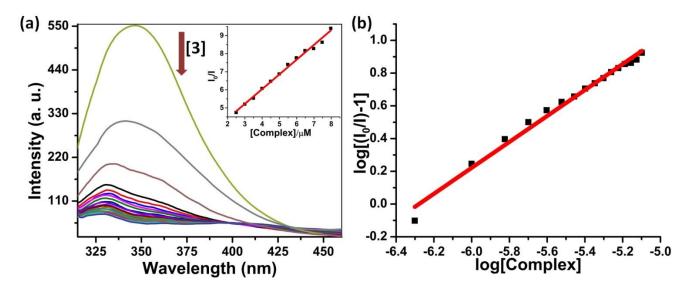

Table S1: Selected bond lengths (Å) and bond angles (deg) for [Eu(Pypp)(TTA)3] (3).

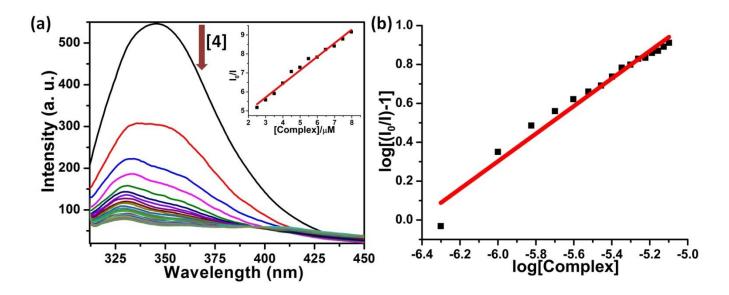

Figure S8. UV/Vis traces for complex **2** (20 μ M) in 5 mM Tris buffer (pH 7.2) with increasing [CT-DNA] at 298 K; Inset: [DNA]/ $\Delta \varepsilon_{af}$ versus [DNA] plot for complex **2**.

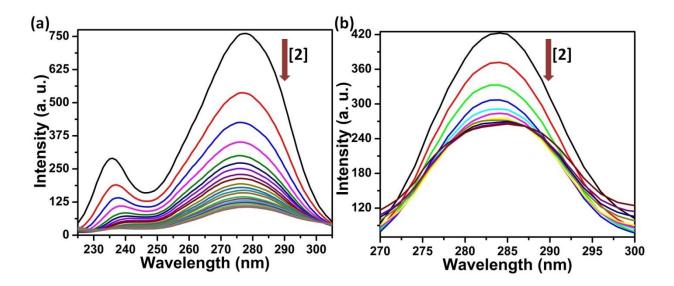

Figure S9. UV/Vis traces for complex **3** (20 μ M) in 5 mM Tris buffer (pH 7.2) with increasing [CT-DNA] at 298 K; Inset: [DNA]/ $\Delta \epsilon_{af}$ versus [DNA] plot for complex **3**.

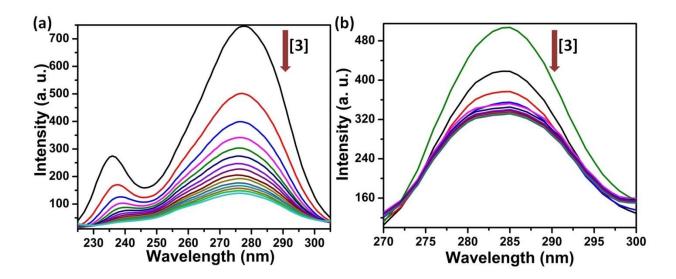

Figure S10. UV/Vis traces for complex **4** (20 μ M) in 5 mM Tris buffer (pH 7.2) with increasing [CT-DNA] at 298 K; Inset: [DNA]/ $\Delta \epsilon_{af}$ versus [DNA] plot for complex **4**.

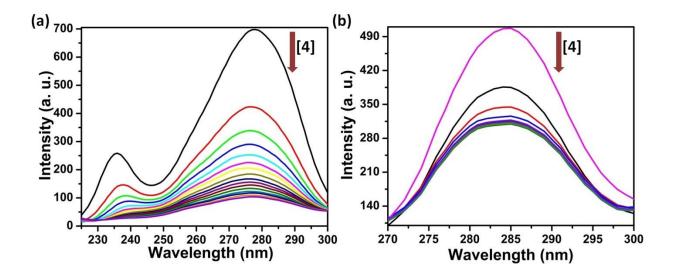

Figure S11. Emission spectral traces for EB-bound CT-DNA with increasing concentration of complex **2** in 5 mM Tris buffer (pH 7.2) at 298 K; $\lambda_{ex} = 546$ nm, $\lambda_{em} = 603$ nm, [DNA] = 212 μ M, [EB] = 12 μ M; Inset: a plot of I/I₀ versus [complex **2**].


Figure S12. Emission spectral traces for EB-bound CT-DNA with increasing concentration of complex **3** in 5 mM Tris buffer (pH 7.2) at 298 K; $\lambda_{ex} = 546$ nm, $\lambda_{em} = 603$ nm, [DNA] = 212 μ M, [EB] = 12 μ M; Inset: a plot of I/I₀ versus [complex **3**].


Figure S13. Emission spectral traces for EB-bound CT-DNA with increasing concentration of complex **4** in 5 mM Tris buffer (pH 7.2) at 298 K; $\lambda_{ex} = 546$ nm, $\lambda_{em} = 603$ nm, [DNA] = 212 μ M, [EB] = 12 μ M; Inset: a plot of *I/I*₀ versus [complex **4**].


Figure S14. (a) The emission quenching of HSA addition of complex 2 in 5 mM Tris buffer (pH 7.2) at 298 K; Inset: a plot of I₀/I versus [complex] for 2; $\lambda_{ex} = 295$ nm, $\lambda_{em} = 345$ nm, [HSA] = 5 μ M. (b) Scatchard plot: log[(*I*₀-*I*)/*I*] vs. log[Complex] for HSA in the presence of complex 2.


Figure S15. (a) The emission quenching of HSA addition of complex **3** in 5 mM Tris buffer (pH 7.2) at 298 K; Inset: a plot of I_0/I versus [complex] for **3**; $\lambda_{ex} = 295$ nm, $\lambda_{em} = 345$ nm, [HSA] = 5 μ M. (b) Scatchard plot: log[(I_0 -I)/I] vs. log[Complex] for HSA in the presence of complex **3**.


Figure S16. (a) The emission quenching of HSA addition of complex **4** in 5 mM Tris buffer (pH 7.2) at 298 K; Inset: a plot of I₀/I versus [complex] for **4**; $\lambda_{ex} = 295$ nm, $\lambda_{em} = 345$ nm, [HSA] = 5 μ M. (b) Scatchard plot: log[(*I*₀-*I*)/*I*] vs. log[Complex] for HSA in the presence of complex **4**.

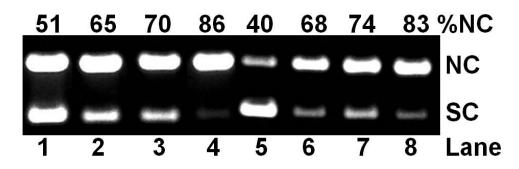

Figure S17. Synchronous emission spectra of HSA (5 μ M) showing effect of increasing concentration of complex **2** (**a**) with $\Delta\lambda = 60$ nm and (**b**) with $\Delta\lambda = 15$ nm at 298 K in Tris buffer (pH = 7.2).

Figure S18. Synchronous emission spectra of HSA (5 μ M) showing effect of increasing concentration of complex **3** (a) with $\Delta \lambda = 60$ nm and (b) with $\Delta \lambda = 15$ nm at 298 K in Tris buffer (pH = 7.2).

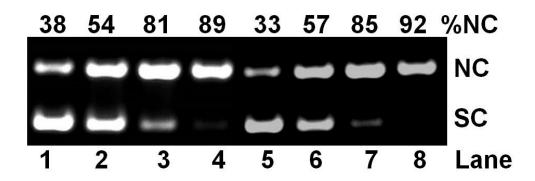


Figure S19. Synchronous emission spectra of HSA (5 μ M) showing effect of increasing concentration of complex **4** (**a**) with $\Delta\lambda = 60$ nm and (**b**) with $\Delta\lambda = 15$ nm at 298 K in Tris buffer (pH = 7.2).


Figure S20. Gel electrophoresis diagram showing the cleavage of SC pUC19 DNA (30 μ M, 0.2 μ g) incubated with complexes **1** and **2** (60 μ M) in 50 mM Tris-HCl/NaCl buffer (pH, 7.2) at 37 °C for 1.5 h on irradiation with UV-A light of 365 nm (6 W) for various exposure time. Detailed conditions are given below in a tabular form.

	Reaction	λ/nm	Exposure time	%NC
	Condition		(t/min)	
1	DNA+ 1	365	30	51
2	DNA+ 1	365	60	65
3	DNA+ 1	365	90	70
4	DNA+ 1	365	120	86
5	DNA+ 2	365	30	40
6	DNA+ 2	365	60	68
7	DNA+ 2	365	90	74
8	DNA+ 2	365	120	83

Figure S21. Gel electrophoresis diagram showing the cleavage of SC pUC19 DNA ($30 \mu M$, $0.2 \mu g$) incubated with complexes **3** and **4** ($60 \mu M$) in 50 mM Tris-HCl/NaCl buffer (pH, 7.2) at 37 °C for 1 h on irradiation with UV-A light of 365 nm (6 W) for various exposure time. Detailed conditions are given below in a tabular form.

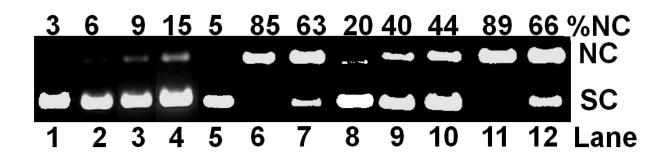
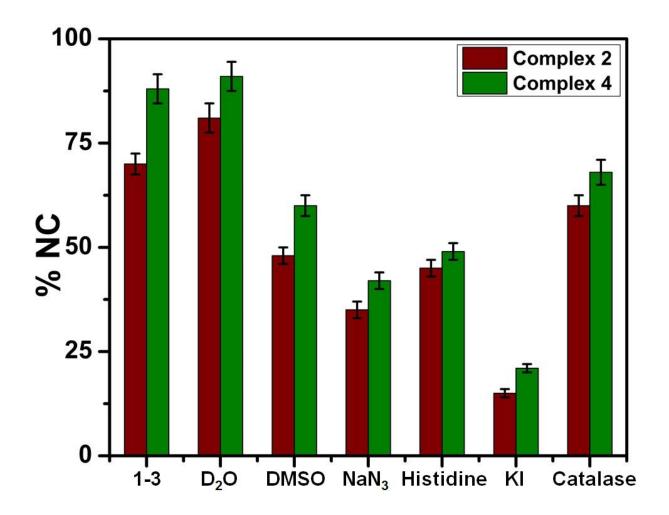

Lane No.	Reaction	λ/nm	Exposure time	%NC
	Condition		(t/min)	
1	DNA+ 3	365	30	38
2	DNA+ 3	365	60	54
3	DNA+ 3	365	90	81
4	DNA+ 3	365	120	89
5	DNA+ 4	365	30	33
6	DNA+ 4	365	60	57
7	DNA+ 4	365	90	85
8	DNA+ 4	365	120	92

Figure S22. Gel electrophoresis diagram showing the cleavage of SC pUC19 DNA (30 μ M, 0.20 μ g μ L-1) incubated with complexes **1** and controls in 50 mM Tris-HCl/NaCl buffer (pH, 7.2) at 37 °C for 2 h on irradiation with UV-A light of 365 nm (6 W) for 1 h: lane 1, DNA control; lane 2, DNA + HTTA (60 μ M); lane 3, DNA + Anpp (60 μ M); lane 4, DNA + Pypp (60 μ M); lane 5, EuCl₃· xH₂O control (60 μ M); lane 6, DNA + **1** (60 μ M); Lane 7, DNA + **1** (60 μ M) + DMSO (4 μ L); Lane 8, DNA + **1** (60 μ M) + KI (400 μ M); Lane 9, DNA + **1** (60 μ M) + NaN₃ (400 μ M); Lane 10, DNA + **1** (60 μ M) + L-Histidine (400 μ M); Lane 11, DNA + **1** (60 μ M) + D₂O (16 μ L); Lane 12, DNA + catalase (4 unit) + **1** (60 μ M).


Figure S23. Gel electrophoresis diagram showing the cleavage of SC pUC19 DNA (30 μ M, 0.20 μ g μ L-1) incubated with complexes **2** and controls in 50 mM Tris-HCl/NaCl buffer (pH, 7.2) at 37 °C for 2 h on irradiation with UV-A light of 365 nm (6 W) for 1 h: lane 1, DNA control; lane 2, DNA + HTTA (60 μ M); lane 3, DNA + Anpp (60 μ M); lane 4, DNA + Pypp (60 μ M); lane 5, TbCl₃· xH₂O control (60 μ M); lane 6, DNA + **2** (60 μ M); Lane 7, DNA + **2** (60 μ M) + DMSO (4 μ L); Lane 8, DNA + **2**(60 μ M) + KI (400 μ M); Lane 9, DNA + **2** (60 μ M) + NaN₃ (400 μ M); Lane 10, DNA + **2** (60 μ M) + L-Histidine (400 μ M); Lane 11, DNA + **2** (60 μ M) + D₂O (16 μ L); Lane 12, DNA + catalase (4 unit) + **2** (60 μ M).

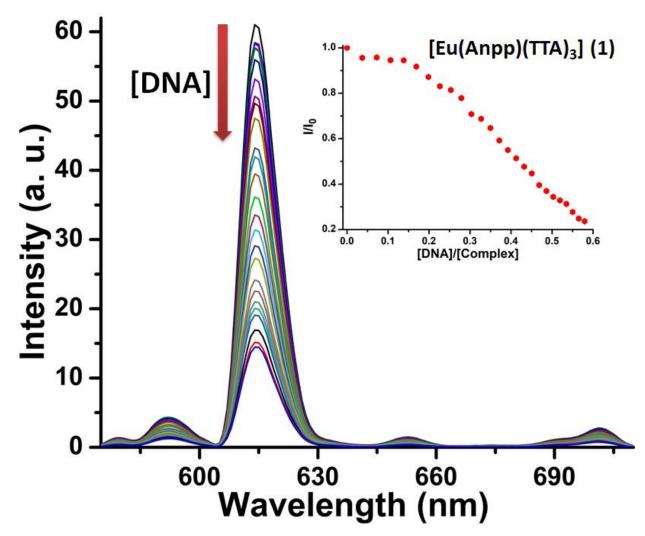

Figure S24. Gel electrophoresis diagram showing the cleavage of SC pUC19 DNA (30 μ M, 0.20 μ g μ L⁻¹) incubated with complexes **3** and controls in 50 mM Tris-HCl/NaCl buffer (pH, 7.2) at 37 °C for 2 h on irradiation with UV-A light of 365 nm (6 W) for 1 h: lane 1, DNA control; lane 2, DNA + HTTA (60 μ M); lane 3, DNA + Anpp (60 μ M); lane 4, DNA + Pypp (60 μ M); lane 5, EuCl₃· xH₂O control (60 μ M); lane 6, DNA + **3** (60 μ M); Lane 7, DNA + **3** (60 μ M) + DMSO (4 μ L); Lane 8, DNA + **3** (60 μ M) + KI (400 μ M); Lane 9, DNA + **3** (60 μ M) + NaN₃ (400 μ M); Lane 10, DNA + **3** (60 μ M) + L-Histidine (400 μ M); Lane 11, DNA + **3** (60 μ M) + D₂O (16 μ L); Lane 12, DNA + catalase (4 unit) + **3** (60 μ M).

Figure S25. Gel electrophoresis diagram showing the cleavage of SC pUC19 DNA (30 μ M, 0.20 μ g μ L-1) incubated with complexes **2** and controls in 50 mM Tris-HCl/NaCl buffer (pH, 7.2) at 37 °C for 2 h on irradiation with UV-A light of 365 nm (6 W) for 1 h: lane 1, DNA control; lane 2, DNA + HTTA (60 μ M); lane 3, DNA + Anpp (60 μ M); lane 4, DNA + Pypp (60 μ M); lane 5, TbCl₃· xH₂O control (60 μ M); lane 6, DNA + **4** (60 μ M); Lane 7, DNA + **4** (60 μ M) + DMSO (4 μ L); Lane 8, DNA + **4** (60 μ M) + KI (400 μ M); Lane 9, DNA + **4** (60 μ M) + NaN₃ (400 μ M); Lane 10, DNA + **4** (60 μ M) + L-Histidine (400 μ M); Lane 11, DNA + **4** (60 μ M) + D₂O (16 μ L); Lane 12, DNA + catalase (4 unit) + **4** (60 μ M).

Figure S26. Cleavage of SC pUC19 DNA (30 μ M, 0.2 μ g) by complexes **2** and **4** (60 μ M) (Wine) and (Olive) on photo-exposure at 365 nm (6 W) for 1.5 h in the presence of various additives in Tris-HCl/NaCl buffer. NaN₃, 0.4 mM; KI, 0.4 mM; D₂O, 16 μ L; L-histidine, 0.4 mM; DMSO, 4 μ L; catalase, 4 U.

Figure S27. Time delayed luminescence spectra of $[Eu(Anpp)(TTA)_3]$ (1) showing quenching of luminescence intensity with increasing the concentration of CT-DNA in 5 mM Tris buffer (pH=7.2) at 298 K [delay time = gate time = 0.1 ms, $\lambda_{ex} = 340$ nm, slit width = 5 nm].