Supporting Information for:

MoO₃ Subnanoclusters on Ultrasmall Mesoporous Silica

Nanoparticles: An Efficient Catalyst for Oxidative Desulfurization

Jiasheng Wang, Wenpei Wu, Hongyang Ye, Yahong Zhao, Wan-Hui Wang, Ming Bao*

State Key Laboratory of Fine Chemicals, School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin 124221, China

Correspongding Author

E-mail: mingbao@dlut.edu.cn

Figure S1. (a) The JCPDS card of MoO₃; (b) the XRD pattern of subnano-MoO₃/UMSN.

Figure S2. N₂ adsorption-desorption isotherms of catalyst (a) C-1, (b) C-2, and (c) C-3.

Figure S3. N₂ adsorption-desorption isotherm and pore size distribution of meso-SiO₂.

1H NMR (500 MHz, Chloroform d) δ7.82 (dd, J= 14.7, 7.6 Hz, 4H), 7.65 (td, J= 7.6, 1.2 Hz, 2H), 7.54 (td, J= 7.6, 1.0 Hz, 2H).

Figure S4. The ¹H NMR spectrum of DBTO₂.

Entry	Substrate	DBT conversion%
S1	S	99.2
S2	S	99.6
S3	S	100

Table S1. ODS conversion of different substrates catalyzed by C-1.^a

a: [cat.]/[S] = 0.075, [O]/[S] = 6, 70 °C, 15 min.

Figure S5. The variation of DBT conversion with runtimes for C-2 and C-3.