Hybrid electromagnetic and leaf-shaped polytetrafluoroethylene triboelectric with arc-shaped braces structure for energy harvesting

Run Huang¹, Jianxiong Zhu^{2,a}

¹School of Materials Science and Engineering, Anhui University of Science & Technology, Huainan, 232001, China ²Beijing Institute of Nanoenergy&Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), Beijing 100083, China

^aCorresponding Author: danverzhu@gmail.com

Figure S1. Measurement results of TENG in the hybrid structure, V_{oc} from the leaf-shaped PTFE electret film without corona charge.

Items	Mechanism	Output voltage
Reference [18]	Triboelectric/Electromagnetic	0.5 V, 6 coils with 113 cm ² from magnetic; 200 V with 56 cm ² from Triboelectric;
Reference [19]	Piezoelectric/triboelectric	320 mV from Piezoelectric; 20 V from Triboelectric;
Reference [20]	Photoelectric/triboelectric	Triboelectric enhanced up to 0.6 V;
Our work	Triboelectric/Electromagnetic	0.25 V at 1 cm ² coil from magnetic; 24 V with 4 cm ² from Triboelectric.

Table S1. In comparison with our work and other group's work of the hybrid energy harvester.