Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Conversion of Glycals into Vicinal-1,2-Diazides and 1,2-(or 2,1)-Azidoacetates Using Hypervalent Iodine Reagents and Me₃SiN₃. Application in the Synthesis of N-Glycopeptides, Pseudotrisaccharides and an Iminosugar

Ande Chennaiah, Srijita Bhowmick¹ and Yashwant D. Vankar*

Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India

Table of Contents:

General Methods	2
Experimental Details and Characterization of products	2-18
NMR Spectra	19-99
ORTEP diagram and Crystal data of the compound 5	100-101
ORTEP diagram and Crystal data of the compound 30	102-103

General procedures:

All experiments were performed in oven-dried apparatus and under nitrogen atmosphere in dry solvents, unless indicated otherwise. Commercial grade solvents were dried by known methods, and dry solvents were stored over 4 Å molecular sieves. IR spectra were recorded as a thin film and expressed in cm⁻¹. High resolution mass spectra were recorded by Q-TOF using electrospray ionization (ESI) method. ¹H (500 MHz or 400 MHz) and ¹³C (125 MHz or 100 MHz) NMR spectra were recorded using CDCl₃ as a solvent. Dichloromethane was freshly distilled over calcium hydride under nitrogen atmosphere. TMSN₃ and TMSOTf were purchased from Sigma-Aldrich Chemical Co. PhI(OOCCF₃)₂ and PhI(OAc)₂ were purchased from Spectrochem Pvt. Ltd (Mumbai). Optical rotations were recorded on AUTOPOL II polarimeter at 25 °C in DCM solvent. TLC plates were prepared using thin layers of silica gel on microscopic slides, and visualization of spots was done by exposure to iodine or spraying with 10% H₂SO₄ and charring. Column chromatography was performed over silica gel (100–200 Mesh) using hexane and ethyl acetate as eluents.

<u>Note: Standard precautions should be taken while handling TMSN₃ during the</u> <u>diazidation reactions. All diazides were synthesized on 150 mg scale since above</u> <u>this scale explosions were observed.</u>

(2R,3R,4R,5R,6S)-2-(acetoxymethyl)-5,6-diazidotetrahydro-2H-pyran-3,4-diyl diacetate 7a:

To a cooled solution of 6a (100 mg, 0.36 mmol), TMSN₃ (0.14 ml, 1.10 mmol) and PhI(OOCCF₃)₂ (158

mg, 0.36 mmol) in dry CH₂Cl₂ (3 mL) at -30 °C under N₂ atmosphere was added TMSOTf (20 μ L, 0.10 mmol). The reaction mixture was stirred at this temperature for 30 min. On consumption of starting material (TLC monitoring) the reaction mixture was quenched with saturated aqueous NaHCO₃ (3 mL). Extraction was done with CH₂Cl₂ (3 × 10 mL), and the combined organic extracts were washed with water (1 ×

10 mL) and brine (1 × 10 mL) and then dried over Na₂SO₄. Evaporation of the solvent followed by silica gel column chromatography of the crude residue with hexane:EtOAc eluent afforded **7a** in 61% yield (61 mg) as a colourless oil; $R_f = 0.30$ (hexane/EtOAc, 7:3). $[\alpha]_D^{28} = -11.7$ (*c* 0.5, CH₂Cl₂); IR (neat) v_{max} /cm⁻¹ 3336, 2112, 1748, 1351, 1237, 1067; ¹H NMR (400 MHz, CDCl₃) δ 5.52 (d, *J* = 4.1 Hz, 1H), 5.47–5.43 (m, 1H), 5.21 (dd, *J* = 10.9, 3.2 Hz, 1H), 4.37 (t, *J* = 6.4 Hz, 1H), 4.13 (dd, *J* = 6.5, 2.2 Hz, 2H), 3.94 (dd, *J* = 10.9, 4.1 Hz, 1H), 2.17 (s, 3H), 2.07 (s, 3H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.0, 169.7, 88.2, 68.9, 68.8, 67.1, 61.5, 57.2, 20.7, 20.6; HRMS Calcd for C₁₂H₁₆N₆O₇ [M + H]⁺ = 357.1159; found 357.1159.

(2S,3R,4R,5R,6R)-2,3-diazido-4,5bis(benzyloxy)6((benzyloxy)methyl) tetrahydro2H-pyran 5:

Compound 5 was prepared from 1 (100 mg, 0.24 mmol) using the procedure described for 7a in 47% **BnO BnO BnO BnO BnO BnO BnO BnO BnO BnO Compound BnO Compound S** a colourless oil; $R_{\rm f} = 0.70$ (hexane/EtOAc,8:2); $[\alpha]_D^{28} = + 8.0$ (c 0.2, CH₂Cl₂); IR (neat) $v_{\rm max}$ /cm⁻¹ 3036, 2118, 1459, 1252, 1079; ¹H NMR (500 MHz, CDCl₃) δ 7.40 - 7.20 (m, 15H), 5.37 (d, J = 4.2 Hz, 1H), 4.84 (d, J = 11.2 Hz, 1H), 4.67 (q, J = 11.3 Hz, 2H), 4.49 (dd, J = 11.5, 5.9 Hz, 2H), 4.41 (d, J = 11.8 Hz, 1H), 4.08 **CON Compound Compound**

3.95 (m, 3H), 3.76 (dd, J = 10.4, 2.6 Hz, 1H), 3.61–3.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.0,

137.6, 137.2, 128.6, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.9, 127.8, 127.7, 127.6, 127.3, 88.7, 77.7, 74.9, 73.6, 73.5, 72.8, 72.2, 71.6, 68.2, 59.3; HRMS Calcd for $C_{27}H_{29}N_6O_4$ [M + H]⁺ = 501.2250; found 501.2248.

(2R,3S,4R,5R,6S)-2-(acetoxymethyl)-5,6-diazidotetrahydro-2H-pyran-3,4-diyl diacetate 9a:

Compound 9a was prepared from 8a (100 mg, 0.36 mmol) using the procedure described for 7a in 58%

yield (76 mg) as a colourless oil; $R_f = 0.30$ (hexane/EtOAc, 7:3); $[\alpha]_D^{28} = +$ 28.0 (*c* 0.2, CH₂Cl₂); IR (neat) v_{max} /cm⁻¹: 3345, 2959, 2108, 1747, 1369, 1222, 1046, 600; ¹H NMR (400 MHz, CDCl₃) δ 5.47 (d, *J* = 4.1 Hz, 1H), 5.39–5.32 (m, 1H), 5.06–4.99 (m, 1H), 4.29 (dt, *J* = 5.9, 2.9 Hz, 1H), 4.19–4.10 (m, 2H), 3.66 (dd,

J = 10.3, 4.2 Hz, 1H), 2.09 (d, J = 2.2 Hz, 6H), 2.04 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 169.9, 169.7, 87.9, 70.8, 69.8, 68.1, 61.6, 60.8, 20.8, 20.7, 20.6; HRMS Calcd for C₁₂H₁₆N₆NaO₇ [M + Na]⁺ = 379.0978; found 379.0979.

(3R,4R,5S,6R)-2,3-diazido-4,5-bis(benzyloxy)-6 ((benzyloxy) methyl) tetrahy dro-2H-pyran 9b :

Compound 9b was prepared from 8b (100 mg, 0.24 mmol) using the procedure described for 7a in 56%

yield (67 mg) as a colourless oil; $R_f = 0.70$ (hexane /EtOAc, 8:2); IR (neat) v_{max} /cm⁻¹ 3030, 2948, 2107, 1454, 1246, 1075; ¹H NMR (500 MHz, CDCl₃) δ 7.37–7.22 (m, 24H), 7.20–7.12 (m, 4H), 5.40 (d, J = 9.1 Hz, 1H), 5.32 (d, J = 4.1 Hz, 1H), 4.85 (d, J = 2.4 Hz, 1H), 4.83–4.77 (m, 2H), 4.69 (s, 2H), 4.62 (dd, J = 25.8,

12.1 Hz, 2H), 4.54–4.46 (m, 4H), 3.97–3.89 (m, 3H), 3.88–3.80 (m, 2H), 3.78–3.74 (m, 2H), 3.72 (dd, J = 7.5, 6.3 Hz, 2H), 3.68 (t, J = 2.0 Hz, 1H), 3.66 (t, J = 2.0 Hz, 1H), 3.57 (dd, J = 9.9, 4.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 138.0, 137.8, 137.7, 137.6, 137.5, 128.7, 128.6, 128.5, 128.4, 128.2, 128.2, 128.1, 128.1, 128.0, 127.9, 127.8, 127.7, 88.4, 88.3, 80.5, 79.0, 77.8, 75.7, 75.3, 75.1, 73.9, 73.9, 73.6, 73.6, 73.1, 72.9, 68.4, 68.0, 63.2, 61.0. HRMS Calcd for C₂₇H₂₉N₆O₄ [M + H]⁺ = 501.2250; found 501.2250.

(2S,3R,4R,5R,6R)-2,3-diazido-4,5-dimethoxy-6-(methoxymethyl)tetrahydro-2H-pyran 7b:

Compound 7b was prepared from 6b (100 mg, 0.53 mmol) using the procedure described for 7a in 56%

yield (81 mg) as a colourless oil; $R_f = 0.40$ (hexane/EtOAc, 7:3). $[\alpha]_D^{28} = -7.7$ (*c* 0.3, CH₂Cl₂). IR (neat) v_{max} /cm⁻¹: 3324, 2110, 1338, 1161; ¹H NMR (500 MHz, CDCl₃) δ 5.37 (d, J = 4.2 Hz, 1H), 4.00 (t, J = 6.5 Hz, 1H), 3.89 (dd, J = 10.4, 4.2 Hz, 1H), 3.77–3.73 (m, 1H), 3.57 (s, 3H), 3.56 (d, J = 0.8 Hz, 1H), 3.54 (s, 3H), 3.52 (d, J = 2.9

Hz, 1H), 3.51–3.49 (m, 1H), 3.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 88.8, 79.5, 74.4, 71.5, 70.6, 61.4, 59.3, 59.1, 57.5; HRMS Calcd for C₉H₁₇N₆O₄ [M + H]⁺ = 273.1311; found 273.1310.

(2S,3R,4R,5R,6R)-2,3-diazido-4,5-bis(methoxymethoxy)-6-(methoxymethoxy) methyl)tetrahydro-2H-pyran 7c:

Compound **7c** was prepared from **6c** (100 mg, 0.35 mmol) using the procedure described for **7a** in 51% yield (67 mg) as a colourles oil; $R_f = 0.40$ (hexane/ EtOAc, 7:3); $[\alpha]_D^{28} = +28.0$ (c 0.2, CH₂Cl₂); IR (neat) v_{max} /cm⁻¹: 3317, 2111, 1341, 1152,

981. ¹H NMR (500 MHz, CDCl₃) δ 5.45 (d, *J* = 3.6 Hz, 1H), 4.83 (dd, *J* = 9.0, 3.3 Hz, 2H), 4.71 – 4.66 (m, 2H), 4.64 (d, *J* = 6.7 Hz, 2H), 4.06 (dd, *J* = 11.0, 4.1 Hz, 2H), 3.97–3.88 (m, 2H), 3.73–3.62 (m, 2H), 3.45 (d, *J* = 1.2 Hz, 3H), 3.40 (s, 3H), 3.36 (t, *J* = 3.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 97.6, 96.9, 95.2, 88.6, 73.7, 72.1, 71.8, 66.5, 59.3, 56.3, 56.2, 55. 6; HRMS Calcd for C₁₂H₂₂N₆NaO₇ [M + Na]⁺ = 385.1448; found 385.1446.

(2S,3R,4R,5S,6R)-2,3-diazido-4,5-bis(methoxymethoxy)-6-((methoxymethoxy)methyl)tetrahydro-2H-pyran 9c:

Compound 9c was prepared from 8c (100 mg, 0.35 mmol) using the procedure described for 7a in 58 %

yield (76 mg) as a colourless oil; $R_f = 0.60$ (hexane/EtOAc, 7:3); IR (neat) v_{max} /cm⁻¹: 3328, 2110, 1338, 1158: ¹H NMR (400 MHz, CDCl₃) δ 5.45 (d, J = 9.0 Hz, 1H), 5.36 (d, J = 4.1 Hz, 1H), 4.89–4.79 (m, 2H), 4.77–4.72 (m, 3H), 4.71 (d, J = 2.2 Hz, 1H), 4.68 (dt, J = 3.0, 1.9 Hz, 4H), 4.62 (d, J = 1.3 Hz, 1H), 3.96 (ddd, J

= 8.9, 3.7, 1.5 Hz, 1H), 3.93–3.78 (m, 5H), 3.77 (t, J = 3.7 Hz, 1H), 3.74 (dd, J = 3.8, 2.5 Hz, 1H), 3.73–3.65 (m, 1H), 3.48 (d, J = 1.5 Hz, 4H), 3.46–3.41 (m, 3H), 3.39 (d, J = 2.8 Hz, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 98.4, 98.1, 96.9, 96.8, 88.2, 88.1, 84.0, 81.1, 73.1, 71.4, 71.3, 69.1, 66.5, 66.1, 65.8, 62.5, 61.5, 56.4, 56.3, 55.5, 55.5, 55.4; HRMS Calcd for C₁₂H₂₂N₆NaO₇ [M + Na]⁺ = 385.1448 found; 385.1446.

(2R,3R,4R,5R,6S)-5,6-diazido-2-(((4-nitrobenzoyl)oxy)methyl)tetrahydro-2H-pyran-3,4-diyl bis(4-nitrobenzoate) 7e:

Compound **7e** was prepared from **6e** (100 mg, 0.16 mmol) using the procedure described for **7a** in 47% yield (54 mg) as a colourless oil; $R_{\rm f} = 0.40$ (hexane/EtOAc, 7:3); $[\alpha]_D^{28} = +7.7$ (*c* 0.2, CH₂Cl₂); IR (neat) $v_{\rm max}$ /cm⁻¹ 3214, 2117, 1741, 1539, 1337, 1047; ¹H NMR (500 MHz, CDCl₃) δ 8.36–7.99 (m, 12H), 6.00 (d, J = 2.7 Hz, 1H), 5.75 (d, J = 4.1 Hz, 1H), 5.64 (dd, J = 10.9, 3.1 Hz, 1H), 4.79 (t, J = 6.6 Hz, 1H), 4.62 (dd, J = 11.5, 7.0 Hz, 1H), 4.47 (dd, J =

11.5, 6.0 Hz, 1H), 4.24 (dd, J = 10.9, 4.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 164.1, 163.8, 163.5, 151.3, 151.0, 150.9, 134.4, 133.9, 133.7, 131.1, 131.0, 130.9, 124.1, 123.9, 123.8, 88.3, 70.4, 68.9, 68.9, 62.6, 57.7; HRMS Calcd for C₂₇H₂₀N₉O₁₃ [M + H]⁺ = 678.1181 found; 678.1180.

(2R,3S,4R,5R)-5,6-diazido-2-(((4-nitrobenzoyl)oxy)methyl)tetrahydro-2H-pyran-3,4-diyl bis(4-nitrobenzoate) 9e:

Compound 9e was prepared from 8e (100 mg, 0.16 mmol) using the procedure described for 7a in 52%

yield (59 mg) as a colourless oil; $R_f = 0.40$ (hexane/EtOAc, 7:3); IR (neat) v_{max} /cm⁻¹: 3210, 2111, 1746, 1548, 1341: ¹H NMR (400 MHz, CDCl₃) δ 8.29–8.09 (m, 25H), 5.97–5.82 (m, 3H), 5.71 (d, J = 4.1 Hz, 1H), 5.64–5.58 (m, 2H), 4.71–4.63 (m, 3H), 4.62–4.51 (m, 3H), 4.27 (dd, J = 3.5, 1.8 Hz, 1H), 3.97 (dd, J = 10.4, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 164.1, 163.7, 163.6, 151.1, 151.0, 150.8, 134.8,

134.7, 133.7, 133.5, 133.4, 131.2, 131.1, 131.1, 131.0, 130.9, 123.9, 123.8, 123.7, 123.7, 88.0, 87.9, 71.8, 71.5, 70.5, 69.7, 69.6, 67.0, 63.1, 62.9, 61.4, 60.9; HRMS Calcd for $C_{27}H_{20}N_9O_{13}$ [M + H]⁺ = 678.1181; found 678.1180.

(2R,3S,4R,5R)-5,6-diazido-2-((benzoyloxy)methyl)tetrahydro-2H-pyran-3,4-diyl dibenzoate 9d:

Compound 9d was prepared from 8d (100 mg, 0.21 mmol) using the procedure described for 7a in 48%

yield (57 mg) as a colourless oil; $R_f = 0.40$ (hexane/ EtOAc, 7:3); IR (neat) v_{max} /cm⁻¹ 3068, 2971, 2112, 1724, 1276, 1110; ¹H NMR (400 MHz, CDCl₃) δ 8.10–7.83 (m, 10H), 7.57–7.30 (m, 16H), 5.90 (dt, J = 20.0, 9.9 Hz, 2H), 5.78 (dd, J = 9.9, 3.6 Hz, 1H), 5.60 (dd, J = 18.4, 7.0 Hz, 2H), 5.52 (d, J = 1.7 Hz, 1H), 4.62

(dt, J = 4.3, 2.7 Hz, 1H), 4.59–4.53 (m, 1H), 4.53–4.49 (m, 1H), 4.49–4.42 (m, 1H), 4.20 (dd, J = 3.6, 1.9 Hz, 1H), 3.84 (dd, J = 10.4, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.2, 166.1, 165.6, 165.5, 165.3, 133.8, 133.7, 133.7, 133.6, 133.3, 133.2, 130.0, 129.9, 129.9, 129.8, 129.6, 129.5, 128.7, 128.6, 128.5, 128.4, 128.3, 88.1, 88.0, 71.6, 70.8, 70.7, 70.2, 69.1, 66.3, 62.9, 62.6, 61.4, 61.2; HRMS Calcd for C₂₇H₂₃N₆O₇ [M + H]⁺ = 543.1628; found 543.1626.

(2R,3R,4R,5R,6S)-5,6-diazido-2-((benzoyloxy)methyl)tetrahydro-2H-pyran-3,4-diyl dibenzoate 7d:

Compound 7d was prepared from 6d (100 mg, 0.21 mmol) using the procedure described for 7a in 51%

yield (60 mg) as a colourless oil; $R_{\rm f} = 0.50$ (hexane/ EtOAc, 7:3); $[\alpha]_D^{28} = +12.7$ (*c* 0.4, CH₂Cl₂); IR (neat) $v_{\rm max}$ /cm¹ 3327, 2111, 1732, 1323, 1053; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 7.5, 0.7 Hz, 4H), 7.93–7.82 (m, 2H), 7.67–7.27 (m, 10H), 6.00 (d, J = 2.7 Hz, 1H), 5.70 (d, J = 4.1 Hz, 1H), 5.63 (dd, J = 10.8, 3.2 Hz, 1H), 4.72 (t, J = 6.5 Hz, 1H), 4.59 (dd, J = 11.5, 7.1 Hz, 1H), 4.38 (dd, J = 11.5, 5.6 Hz,

1H), 4.22 (dd, J = 10.8, 4.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 166.0, 165.2, 133.8, 133.65, 133.4, 130.0, 129.9, 129.9, 129.8, 129.3, 128.9, 128.7, 128.5, 88.4, 69.5, 69.4, 68.0, 62.3, 58.0; HRMS Calcd for C₂₇H₂₃N₆O₇ [M + H]⁺ = 543.1628; found 543.1627.

(((2R,3R,4R,5R)-5,6-diazido-2-(((tert-butyldimethylsilyl)oxy)methyl)tetrahydro-2H-pyran-3,4-diyl)bis(oxy))bis(tert-butyldimethylsilane) 9f:

Compound 9f was prepared from 8f (100 mg, 0.20 mmol) using the procedure described for 7a in 45%

yield (53 mg) as a colourless oil; $R_f = 0.80$ (hexane/ EtOAc, 9:1); IR (neat) v_{max} /cm⁻¹ 2930, 2111, 1253, 1089, 837, 779; ¹H NMR (400 MHz, CDCl₃) δ 5.37 (d, J = 4.1 Hz, 1H), 5.35 (d, J = 9.0 Hz, 1H), 4.01–3.89 (m, 11H), 3.83 (dddd, J = 12.5, 12.0, 9.5, 7.0 Hz, 10H), 3.76–3.53 (m, 8H), 3.41 (dd, J = 10.1, 4.2 Hz,

2H), 0.91 (dd, J = 2.2, 0.8 Hz, 30H), 0.11 (dd, J = 4.1, 1.8 Hz, 20H); ¹³C NMR (100 MHz, CDCl₃) δ 88.3, 73.1, 72.8, 72.3, 72.1, 70.8, 70.5, 64.7, 64.2, 62.6, 62.4, 26.0, 18.4, -5.2; HRMS Calcd for C₂₄H₅₃N₆O₄S_{i3} [M + H]⁺ = 573.3436; found 573.3431.

(3R,4S,5S,6R)-5,6-diazidotetrahydro-2H-pyran-3,4-diyl diacetate 11a:

Compound 11a was prepared from 10a (100 mg, 0.49 mmol) using the procedure described for 7a in 49%

yield (69 mg) as a colourless oil; $R_f = 0.40$ (hexane/EtOAc, 8:2); $[\alpha]_D^{28} = +18.0$ (*c* 0.3, CH₂Cl₂); IR (neat) v_{max} /cm⁻¹ 2938, 2109, 1747, 1372, 1231, 1097; ¹H NMR (500 MHz, CDCl₃) δ 5.49 (d, J = 4.0 Hz, 1H), 5.32 (s, 1H), 5.19 (dd, J = 10.7, 3.2 Hz, 1H), 4.10 (d, J = 13.2 Hz, 1H), 3.95 (dd, J = 10.6, 4.0 Hz, 1H), 3.82 (dd, J = 13.2, 2.1 Hz,

1H), 2.15 (s, 3H), 2.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 169.6, 88.6, 68.3, 67.9, 62.5, 57.5, 20.8, 20.6; HRMS Calcd for C₉H₁₃N₆O₅ [M + H]⁺ = 285.0947; found 285.0942.

(2R,3S,4S,5R)-2,3-diazido-4,5-bis(benzyloxy)tetrahydro-2H-pyran 11b:

Compound 11b was prepared from 10b (100 mg, 0.33 mmol) using the procedure described for 7a in

53% yield (68 mg) as a colourless oil; $R_{\rm f} = 0.60$ (hexane/EtOAc, 8:2); $[\alpha]_D^{28} = +35.0$ (*c* 0.3, CH₂Cl₂); IR (neat) $v_{\rm max}$ /cm⁻¹ 3024, 2952, 2115, 1444, 1238, 1071; ¹H NMR (400 MHz, CDCl₃) δ 7.33 (ddd, J = 10.1, 7.4, 4.6 Hz, 11H), 5.39 (d, J = 3.9 Hz, 1H), 4.66 (d, J = 4.9 Hz, 2H), 4.60 (s, 2H), 4.05 (dd, J = 9.3, 3.9 Hz, 1H), 3.90–3.86 (m, 1H), 3.78–

3.73 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 137.4, 128.7, 128.6, 128.2, 128.1, 128.0, 88.9, 75.9, 72.0, 71.9, 71.8, 62.4, 59.4; HRMS Calcd for C₁₉H₂₁N₆O₃ [M + H]⁺ = 381.1675; found, 381.1675.

1,1'-((2S,3R,4R,5R,6R)-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2,3-diyl)bis(4-phenyl-1H-1,2,3-triazole) 13:

To a solution of **7b** (100 mg, 0.199 mmol) and phenylacetylene (44 μ L, 0.39 mmol) in 1:1 ratio of H₂O/EtOH (4 mL) were added sodium ascorbate (18 mg, 0.08 mmol) and copper(II) sulfate pentahydrate (7.2 mg, 0.03 mmol). The heterogeneous mixture was stirred vigorously at 60 °C for 6 h. Upon consumption of starting material (TLC monitoring) the reaction mixture was diluted with 5 mL of water and extraction was done with EtOAc (3 × 5 mL). The combined organic extracts were washed with brine (1 × 5 mL) and then dried

over Na₂SO₄. Concentration in vacuo gave a crude residue which was purified by silica gel column chromatography with hexane:EtOAc eluent to afford **13** in 80% yield (113 mg) as a colourless oil; $R_{\rm f} = 0.40$ (hexane/EtOAc, 8:2); $[\alpha]_D^{28} = -31.0$ (*c* 0.3, CH₂Cl₂); IR (neat) $v_{\rm max}$ /cm⁻¹ 3137, 3031, 2923, 1454, 1104, 1074, 1027, 739, 764, 695; ¹H NMR (500 MHz, CDCl₃) δ 8.23 (s, 1H), 7.99 (s, 1H), 7.82 (d, *J* = 7.7 Hz, 2H), 7.72 (d, *J* = 7.5 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.40– .32 (m, 8H), 7.32–7.23 (m, 9H), 7.18–7.13 (m, 2H), 6.49–6.44 (m, 1H), 6.37 (d, *J* = 2.7 Hz, 1H), 4.85 (d, *J* = 11.0 Hz, 1H), 4.74 (d, *J* = 11.1 Hz, 1H), 4.71–4.60 (m, 3H), 4.51 (dd, *J* = 22.8, 11.4 Hz, 2H), 4.18 (t, *J* = 8.5 Hz, 1H), 3.89 (dd, *J* = 10.7, 3.6 Hz, 1H), 3.82–3.73 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 148.3, 146.3, 137.7, 137.2, 136.9, 135.2, 130.4, 129.8, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.3, 128.0, 127.9, 126.0, 125.8, 123.6, 120.0, 119.1, 108.3, 84.5, 78.8, 74.8, 74.4, 73.8, 72.4, 68.7, 68.1, 66.6, 58.5; HRMS Calcd for C₄₃H₄₀N₆NaO₄ [M + Na]⁺ = 727.3009; found 727.3006.

(2R,3R,4R,5R,6S)-2-(acetoxymethyl)-5,6-bis(4-((((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetra hy dro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran 5-yl)methoxy)methyl)-1H-1,2,3-triazol-1-yl)tetra h y d ro-2H-pyran-3,4-diyl diacetate 15:

To a solution of **7a** (100 mg, 0.28 mmol) and **14** (168 mg, 0.56 mmol) in 1:1 ratio of $H_2O/EtOH$ (4 mL) were added sodium ascorbate (25 mg, 0.12 mmol) and copper(II) sulfate pentahydrate (11 mg, 0.04 mmol). The heterogeneous mixture was stirred vigorously at 60 °C for 8h. Upon consumption of starting material (TLC monitoring) the reaction mixture was diluted with **5 mL of water** and extraction was done with

EtOAc (3 × 5 mL). The combined organic extracts were washed with brine (1 × 5 mL) and then dried over Na₂SO₄. Concentration in vacuo gave a crude residue which was purified by silica gel column chromatography with hexane:EtOAc eluent to afford **15** in 75 % yield (200 mg) as a colourless oil; $R_{\rm f}$ = 0.40 (hexane/EtOAc 6:4); $[\alpha]_D^{28} = -26.0$ (*c* 0.5, CH₂Cl₂)IR (neat) $v_{\rm max}$ /cm⁻¹ 3129, 3062, 2914, 2868, 1458, 1040, 1021, 1027, 739, 764, 695; ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 4.4 Hz, 1H), 7.13 (s, 1H), 6.68 (dd, *J* = 12.0, 3.4 Hz,1), 6.40 (d, *J* = 5.8 Hz, 1H), 5.77 (dd, *J* = 11.9, 5.8 Hz, 1H), 5.72 (d, *J* = 3.0 Hz, 1H), 5.48 (dd, *J* = 4.9, 1.9 Hz, 2H), 4.70 (t, *J* = 6.5 Hz, 1H), 4.61 (s, 2H), 4.56 (dd, *J* = 7.9, 2.3 Hz, 2H), 4.45 (d, *J* = 5.6 Hz, 2H), 4.27 (td, *J* = 5.1, 2.3 Hz, 2H), 4.21–4.13 (m, 3H), 4.10–4.01 (m, 1H), 3.95–3.90 (m, 1H), 3.90 – 3.85 (m, 1H), 3.65 (dd, *J* = 10.2, 5.3 Hz, 1H), 3.58 (dd, *J* = 10.2, 7.0 Hz, 1H), 5.51 (dd, *J* = 10.1, 5.7 Hz, 1H), 3.45 (dd, *J* = 10.1, 6.8 Hz, 1H), 2.20 (s, 3H), 1.98 (s, 3H), 1.86 (s, 3H), 1.50 (s, 3H), 1.48 (s, 3H), 1.40 (d, *J* = 2.5 Hz, 6H), 1.31 – 1.28 (m, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 169.9, 169.4, 145.7, 145.5, 125.3, 121.2, 109.4, 109.3, 108.6, 96.4, 96.3, 84.0, 71.2, 71.1, 71.0, 70.7, 70.6, 70.5, 69.7, 69.2, 66.9, 66.7, 66.5, 64.6, 64.3, 61.1, 57.5, 26.2, 26.1, 26.0, 25.0, 24.9, 24.5, 20.7, 20.6, 20.4; HRMS Calcd for C₄₂H₆₁N₆O₁₉ [M + H]⁺ = 953.3991; found 953.3990.

(2R,3R,4R,5R,6R)-2-(acetoxymethyl)-5-azido-6-(2-((tert-butoxycarbonyl)amino)-3-(1H-indol-2-yl)propanamido)tetrahydro-2H-pyran-3,4-diyl diacetate 18:

To a stirred solution of **7a** (100 mg, 0.28 mmol) in acetonitrile/ethanol (1:1, 4 mL) was added tetrathiomolybdate (118 mg, 0.28 mmol) and stirring continued at room temperature for 8 h. Upon consumption of starting material (TLC monitoring) the solvent was evaporated under reduced pressure. The black residue was extracted with $CH_2Cl_2/ether$

(1:10, 4 X 5 mL) and filtered through a pad of Celite. The solvent was evaporated to give the crude amine **16**. 2-((tert-butoxycarbonyl)amino)-3-(1H-indol-2-yl)propanoic acid (74 mg, 0.25 mmol) was taken in a round bottomed flask under nitrogen and dissolved in dry CH₂Cl₂ (2 mL). The reaction flask was then cooled to 0 °C and to it hydroxybenzotriazole (58 mg, 0.37 mmol) followed by EDC (57 mg, 0.37 mmol) were added and the reaction mixture stirred at 0 °C for 15 min. The crude glycosyl amine **16** was dissolved in dry CH₂Cl₂ (2 mL), and N,N-diisopropylethylamine (44 µL, 0.25 mmol) was added successively to the reaction mixture at 0 °C and allowed to stir at room temp for 8 h. After completion of reaction (TLC monitoring) it was extracted with CH₂Cl₂ (2 x 10 mL). The organic layer was washed with 1N HCl (2 x 5 mL) followed by saturated aqueous NaHCO₃ solution (2 x 5 mL) and with brine. The organic layer was dried over Na₂SO₄. Evaporation of the solvent gave a residue which was purified by column chromatography with hexane:EtOAc as eluent to afford **18** in 78% (135 mg) over two steps as a colourless oil; *R*_f = 0.30 (hexane/EtOAc, 1:1); IR (neat) v_{max} /cm⁻¹: 3342, 2117, 1741, 1702, 1630; ¹H NMR (500 MHz, CDCl₃) δ 8.38 (s, 1H), 7.64 (d, *J* = 7.9 Hz, 1H), 7.38 (d, *J* = 8.0 Hz, 1H), 7.21 (t, *J* = 7.6

Hz, 1H), 7.14 (t, J = 7.4 Hz, 1H), 7.05 (d, J = 1.9 Hz, 1H), 6.09 (d, J = 9.1 Hz, 1H), 5.32 (d, J = 2.8 Hz, 1H), 5.04 (s, 1H), 4.98 (d, J = 7.0 Hz, 1H), 4.89 (dd, J = 11.3, 3.0 Hz, 1H), 4.50 (ddd, J = 11.4, 9.3, 4.2 Hz, 1H), 4.43 (dd, J = 12.2, 5.7 Hz, 1H), 4.20 (t, J = 6.4 Hz, 1H), 4.11 (dd, J = 11.3, 5.9 Hz, 1H), 4.05 (dd, J = 11.3, 7.0 Hz, 1H), 3.43 (dd, J = 14.7, 5.0 Hz, 1H), 3.11 (dd, J = 14.8, 5.8 Hz, 1H), 2.14 (s, 3H), 2.04 (s, 3H), 1.91 (s, 3H), 1.42 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 170.8, 170.5, 170.2, 155.4, 136.4, 127.1, 122.9, 122.7, 119.9, 119.1, 111.4, 110.2, 88.4, 80.6, 68.7, 67.3, 67.0, 61.7, 54.8, 47.0, 28.36, 20.7, 20.5; HRMS Calcd for C₂₈H₃₇N₆O₁₀ [M + H]⁺ = 617.2571 found; 617.2570.

(2R,3R,4R,5R,6R)-2-(acetoxymethyl)-5-azido-6-(2-((S)-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxamido)acetamido)tetrahydro-2H-pyran-3,4-diyl diacetate 19:

Compound 19 was prepared from 7a (100 mg, 0.28 mmol) and (S)-2-(1-(tert-butoxycarbonyl)pyrrolidine-

2-carboxamido) acetic acid (76 mg, 0.28 mmol) using the procedure described for **18** in 80% yield (131 mg, over two steps) as a colourless oil; $R_{\rm f}$ = 0.30 (hexane/EtOAc, 4:6); $[\alpha]_D^{28}$ = -18.0 (*c* 0.2, CH₂Cl₂) IR (neat) $v_{\rm max}$ /cm⁻¹: 3357, 2111, 1738, 1709, 1627. ¹H NMR (500 MHz, CDCl₃) δ 7.50–6.76 (m,

1H), 6.34 (s, 1H), 5.61 (dd, J = 16.5, 3.8 Hz, 1H), 5.37 (t, J = 7.8 Hz, 1H), 5.12–5.03 (m, 1H), 4.57 (s, 1H), 4.30 (dt, J = 12.6, 6.5 Hz, 2H), 4.24–4.13 (m, 2H), 4.14–4.01 (m, 2H), 3.70 (s, 1H), 3.41 (d, J = 48.2 Hz, 2H), 2.15 (d, J = 7.9 Hz, 3H), 2.06 (s, 3H), 2.00 (s, 3H), 1.98 – 1.85 (m, 3H), 1.46 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 171.0, 170.6, 170.5, 169.6, 155.9, 128.3, 88.5, 88.3, 80.7, 69.7, 69.3, 68.7, 68.6, 67.2, 66.9, 62.5, 61.8, 59.9, 49.9, 47.2, 41.1, 28.4, 23.1, 23.0, 20.9, 20.8, 20.7; HRMS Calcd for C₂₄H₃₇N₆O₁₁ [M + H]⁺ = 585.2520 found; 585.2520.

(2R,3R,4R,5R,6R)-2-(acetoxymethyl)-5-azido-6-(2-((S)-2-((tert-butoxycarbonyl)amino)-4-methylpentanamido)acetamido)tetrahydro-2H-pyran-3,4-diyl diacetate 20:

Compound 20 was prepared from 7a (100 mg, 0.30 mmol) and (S)-2-(2-((tert-butoxycarbonyl) amino)-4-

methylpentanamido) acetic acid (86 mg, 0.30 mmol), using the procedure described for **18**, in 76% yield (128 mg, over two steps) as a colourless oil; $R_{\rm f} = 0.30$ (hexane/EtOAc, 6:4); $[\alpha]_D^{28} = +36.0$ (*c* 0.4, CH₂Cl₂); IR (neat) $v_{\rm max}$ /cm⁻¹ 3412, 2111, 1741, 1697. ¹H NMR (400 MHz, CDCl₃) δ 7.89 –

7.39 (m, 1H), 7.37 (t, J = 5.4 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 5.61 (d, J = 4.1 Hz, 1H), 5.43 (d, J = 15.1 Hz, 2H), 5.15–5.02 (m, 1H), 4.61–4.47 (m, 1H), 4.35 (t, J = 6.5 Hz, 1H), 4.23–4.07 (m, 3H), 4.07–3.97 (m, 1H), 3.98–3.87 (m, 1H), 2.15 (s, 3H), 2.06 (d, J = 2.5 Hz, 3H), 1.99 (s, 3H), 1.66 (ddd, J = 13.6, 11.9, 5.5 Hz, 2H), 1.56–1.48 (m, 1H), 1.44 (d, J = 5.8 Hz, 9H), 0.94 (dd, J = 8.2, 4.9 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 173.5, 170.5, 170.4, 170.1, 169.7, 169.3, 155.9, 140.8, 128.3, 126.7, 126.1, 117.3, 110.9, 88.3, 80.4, 80.3, 68.6, 67.6, 67.3, 66.9, 61.7, 53.3, 47.4, 43.0, 41.1, 28.2, 28.1, 27.5, 24.6, 22.9, 21.6, 20.6, 20.4, 20.3; HRMS Calcd for C₂₅H₄₁N₆O₁₁ [M + H]⁺ = 601.2833 found; 601.2833.

(2R,3R,4R,5R,6R)-2-(acetoxymethyl)-5-azido-6-((S)-2-((tert-butoxycarbonyl)amino)propanamido) tetrahydro-2H-pyran-3,4-diyl diacetate 21:

ared from **7a** (100 mg, 0.30 mmol) and (S)-2-((tertbutoxycarbonyl)amino)propanoic acid (53 mg, 0.30 mmol), using the procedure described for **18**, in 81% yield (114 mg, over two steps) as a colourless oil; $R_{\rm f} = 0.30$ (hexane/EtOAc, 6:4); $[\alpha]_D^{28} = -31.0$ (c 0.5,

CH₂Cl₂); IR (neat) v_{max} /cm⁻¹: 3420, 3319, 2110, 1742, 1701, 1679, 1650, 1507, 1374;¹H NMR (400 MHz, CDCl₃) δ 6.57 (s, 1H), 5.52 (d, *J* = 4.1 Hz, 1H), 5.40–5.33 (m, 1H), 5.24–5.11 (m, 1H), 5.08–4.97 (m, 1H), 4.56–4.45 (m, 1H), 4.31 (t, *J* = 6.4 Hz, 1H), 4.15–4.04 (m, 3H), 2.13 (d, *J* = 1.6 Hz, 3H), 2.03 (d, *J* = 1.7 Hz, 3H), 1.95 (d, *J* = 1.7 Hz, 3H), 1.41 (s, 9H), 1.28 (dd, *J* = 7.0, 1.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.0, 173.6, 170.7, 170.5, 170.2, 155.6, 88.5, 80.4, 68.8, 67.6, 67.0, 61.7, 50.2, 47.3, 28.4, 28.3, 20.7, 20.6, 18.6, 18.1; HRMS Calcd for C₂₀H₃₂N₅O₁₀ [M + H]⁺ = 502.2149 found; 502.2146.

(2R,3S,4R,5R,6R)-2-(acetoxymethyl)-5-azido-6-(2-((S)-2-((tert-butoxycarbonyl)amino)-4-methyl-pentanamido)acetamido)tetrahydro-2H-pyran-3,4-diyl diacetate 22:

Compound 22 was prepared from 8a (100 mg, 0.30 mmol) (S)-2-(2-((tert-butoxycarbonyl)amino)-4-

methylpentanamido)acetic acid (86 mg, 0.30 mmol), using the procedure described for **18**, in 82% yield (138 mg) as a colourless oil; $R_{\rm f} = 0.30$ (hexane/EtOAc, 6:4); $[\alpha]_D^{28} = -7.0$ (*c* 0.2, CH₂Cl₂) IR (neat) $v_{\rm max}$ /cm⁻¹: 3349, 2118, 1740, 1711, 1638, 1503. ¹H NMR (400 MHz, CDCl₃) δ 6.89

(d, J = 4.7 Hz, 1H), 6.65 (s, 1H), 5.50 (d, J = 4.2 Hz, 1H), 5.18–4.98 (m, 3H), 4.40–4.23 (m,2H), 4.14 (ddd, J = 7.9, 7.3, 2.2 Hz,3H), 3.91 (s, 2H), 2.11 (s, 3H), 2.04 (s, 6H), 1.89 (d, J = 15.0 Hz,2H), 1.81–1.63 (m, 2H), 1.52 (dt, J = 13.1, 4.1 Hz, 1H), 1.50–1.42 (m, 9H), 0.95 (dd, J = 12.9, 7.1 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 171.6, 170.8, 169.4, 169.3, 156.0, 87.9, 80.5, 70.3, 69.8, 67.7, 61.7, 53.1, 51.6, 43.2, 40.9, 28.3, 24.6, 23.2, 21.7, 20.8, 20.7; HRMS Calcd for C₂₅H₄₁N₆O₁₁ [M + H]⁺ = 601.2833; found 601.2833.

(2R,3S,4R,5R,6R)-2-(acetoxymethyl)-5-azido-6-((S)-2-((tert-butoxycarbonyl)amino)propanamido) tetrahydro-2H-pyran-3,4-diyl diacetate 23:

Compound 23 was prepared from 8a (100 mg, 0.30 mmol) and (S)-2-((tertbutoxycarbonyl)amino)propanoic acid (53 mg, 0.30 mmol), using the procedure described for 18, in 75% yield (106 mg, over two steps) as a

colourless oil; $R_f = 0.30$ (hexane/EtOAc, 6:4); $[\alpha]_D^{28} = -52.0$ (*c* 0.3, CH₂Cl₂); IR (neat) v_{max} /cm⁻¹: 3411, 3323, 2111, 1743, 1669, 1374. ¹H NMR (500 MHz, , CDCl₃) δ 5.96 (d, J = 8.9 Hz, 1H), 5.32 (s, 1H), 5.23 (dd, J = 9.4, 4.3 Hz, 1H), 5.06 (d, J = 6.3 Hz, 1H), 4.49–4.38 (m, 2H), 4.17 – 4.03 (m, 2H), 3.73 (dd, J = 16.9, 7.6 Hz, 2H), 2.13 (s, 3H), 2.10–2.02 (m, 6H), 1.43 (s, 10H), 1.36 (d, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.0, 173.6, 170.7, 170.5, 170.2, 155.1, 88.5, 80.4, 68.8, 67.6, 67.0, 61.78, 50.2, 47.3, 28.4, 28.3, 20.7, 20.6, 18.6, 18.1; HRMS Calcd for C₂₀H₃₂N₅O₁₀ [M + H]⁺ = 502.2149; found 502.2147.

(2R,3R,4R,5R,6S)-5-acetamido-2-(acetoxymethyl)-6-(2-((S)-1-(tert-butoxycarbonyl)pyrrolidine-2-carboxamido)acetamido)tetrahydro-2H-pyran-3,4-diyl diacetate 24:

Compound 19 (55 mg, 0.09 mmol) dissolved in acetic anhydride (1 mL, 10.34 mmol) was cooled to 0 °C.

Zn dust (300 mg) and acetic acid (0.5 mL, 8.46 mmol) were added to this solution and the reaction stirred at rt for 7 h. The reaction was diluted with ethyl acetate (10 mL) and filtered through Celite. Evaporation of the solvent gave a residue which was purified by column chromatography with

hexane:EtOAc eluent afforded **24** in 85% yield (48 mg) as a colourless oil; $R_f = 0.30$ (hexane/EtOAc, 1:1); $[\alpha]_D^{28} = -25.0$ (*c* 0.3, CH₂Cl₂); IR (neat) v_{max} /cm⁻¹: 3410, 1735, 1695, 1628. ¹H NMR (400 MHz, DMSO-D6) δ 8.46 (d, J = 9.2 Hz, 1H), 8.29 – 8.14 (m, 2H), 7.88 (d, J = 9.1 Hz, 1H), 5.23 (d, J = 3.3 Hz, 1H), 5.14–5.02 (m, 3H), 3.98 (qdd, J = 17.9, 16.4, 8.2 Hz, 11H), 3.75 (d, J = 6.1 Hz, 1H), 3.69 (dd, J = 13.0, 5.9 Hz, 3H), 3.65–3.59 (m, 1H), 3.35 (d, J = 4.5 Hz, 3H), 3.31 – 3.19 (m, 3H), 2.08 (s, 6H), 1.97 (s, 6H), 1.82 (d, J = 2.9 Hz, 5H), 1.80–1.74 (m, 14H), 1.38 (s, 6H), 1.31 (s, 9H); ¹³C NMR (400 MHz, DMSO-D6) δ 172.9, 172.6, 171.4, 169.9, 169.8, 168.9, 153.7, 153.3, 79.3, 79.1, 78.9, 78.7, 78.6, 78.5, 71.6, 71.2, 66.7, 61.6, 59.6, 54.9, 48.3, 46.7, 46.4, 30.9, 29.9, 28.1, 28.0, 23.7, 23.1, 22.7, 22.6, 22.5, 21.9, 20.7, 20.6, 20.5; HRMS Calcd for C₂₆H₄₁N₄O₁₂ [M + H]⁺ = 601.2721found 601.2721. HRMS Calcd for C₂₆H₄₁N₄O₁₂ [M + H]⁺ = 601.2721; found 601.2721.

Procedure for preparation of compounds 2 and 3: To a cooled solution of 1 (100 mg, 0.24 mmol), TMSN₃ (95 μ L,0.72 mmol) and PhI(OAc)₂ (78 mg, 0.24 mmol) in dry CH₂Cl₂ (5 mL) at -30 °C under N₂ atmosphere was added TMSOTf (13 μ L, 0.10 mmol). The reaction mixture was stirred at this temperature for 30 min. On consumption of starting material (TLC monitoring), the reaction mixture was quenched with satd. aqueous NaHCO₃ (3 mL). Extraction was done with CH_2Cl_2 (3 × 10 mL), and the combined organic extracts were washed with water $(1 \times 10 \text{ mL})$ and brine $(1 \times 10 \text{ mL})$ and then dried over Na₂SO₄. Concentration in vacuo gave a crude residue which was purified by silica gel column chromatography with hexane: EtOAc as eluent to afford an inseparable mixture of compounds 2 and 3 in 61% overall yield (75 mg) as a colourless oil. To the stirred solution of this mixture of azidoacetates 2 and 3 (75 mg, 0.14 mmol) in acetonitrile/ethanol (1:1, 3 mL) was added tetrathiomolybdate (61 mg, 0.14 mmol) and stirred at room temperature for 10 h. Upon completion of selective reduction of the anomeric azide to amine (TLC monitoring until there was no improvement in product formation) the solvent was evaporated under reduced pressure, the black residue was extracted with CH₂Cl₂/ether (1:10, 4 x 5 mL) and filtered through a pad of Celite, and the solvent evaporated. The residue was purified by column chromatography (eluents: $CHCl_3/MeOH, 9:1$) to give the unreacted azidoacetate **3** (41 mg) and glycosyl amine (15 mg). This amine was characterized as the corresponding acetate 25, prepared by using acetic anhydride (3 µL, 0.03 mmol) and Et₃N (4 µL, 0.03 mmol) in dry CH₂Cl₂ (2 mL) at 0 °C in 80% yield (13 mg) as a colorless oil.

(3R,4R,5R,6R)-3-azido-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl acetate 3:

 $R_{\rm f} = 0.40$ (hexane/EtOAc, 8:2); IR (neat) $v_{\rm max}$ /cm⁻¹ 3078, 3031, 2922, 2862, 2111, 1753, 1488, 1461, 1381, 1307, 1220, 1138, 1091, 1024,927; ¹H NMR (500 MHz, CDCl₃) δ 7.42 - 7.21 (m, 32H), 6.23 (d, J = 3.8 Hz, 1H), 5.40 (d, J = 8.6 Hz, 1H), 4.88 (d, J = 11.3 Hz, 2H), 4.77–4.62 (m, 4H), 4.61–4.52 (m, 2H), 4.49 - 4.37 (m,

5H), 4.08 (dd, J = 10.6, 3.5 Hz, 2H), 4.01–3.86 (m, 4H), 3.69–3.58 (m, 4H), 3.58–3.47 (m, 2H), 3.43 (dd, J = 10.6, 3.5 Hz, 2H), 4.01–3.86 (m, 4H), 3.69–3.58 (m, 4H), 3.58–3.47 (m, 2H), 3.43 (dd, J = 10.6, 3.5 Hz, 2H), 4.01–3.86 (m, 4H), 3.69–3.58 (m, 4H), 3.58–3.47 (m, 2H), 3.43 (dd, J = 10.6, 3.5 Hz, 2H), 4.01–3.86 (m, 4H), 3.69–3.58 (m, 4H), 3.58–3.47 (m, 2H), 3.43 (dd, J = 10.6, 3.5 Hz, 2H), 4.01–3.86 (m, 4H), 3.69–3.58 (m, 4H), 3.58–3.47 (m, 2H), 3.43 (dd, J = 10.6, 3.5 Hz, 2H), 4.01–3.86 (m, 4H), 3.69–3.58 (m, 4H), 3.58–3.47 (m, 2H), 3.43 (dd, J = 10.6, 3.5 Hz, 2H), 4.01–3.86 (m, 4H), 3.69–3.58 (m, 4H), 3.58–3.47 (m, 2H), 3.43 (dd, J = 10.6, 3.5 Hz, 2H), 3.44 (dd, J = 10.6, 3.5 Hz, 3.5

J = 10.3, 2.8 Hz, 1H), 2.13 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 169.2, 138.2, 137.8, 137.5, 137.4, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 128.2, 128.1, 128.0, 127.9, 127.9, 127.5, 93.1, 91.2, 80.8, 77.7, 75.3, 74.8, 74.3, 73.7, 73.6, 72.8, 72.5, 72.2, 71.8, 71.7, 68.1, 67.7, 61.9, 59.0, 21.2, 21.1; HRMS Calcd for C₂₉H₃₁N₃NaO₆ [M + Na]⁺ = 540.2111; found 540.2108.

(2R,3R,4S,5S,6R)-2-acetamido-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-3-yl acetate 25:

 $R_{\rm f}$ =0.20 (hexane/EtOAc,6:4); $[\alpha]_D^{28}$ = + 10.0 (c 0.3, CH₂Cl₂); IR(neat) v_{max}cm⁻¹ 3321, 2953, 2924, 1744,

1693, 1454, 1372, 1235, 1083, 1028, 736, 698; ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.16 (m, 16H), 6.31 (d, *J* = 9.2 Hz, 1H), 5.22 (t, *J* = 9.6 Hz, 1H), 5.06 (t, *J* = 9.3 Hz, 1H), 4.90 (d, *J* = 11.3 Hz, 1H), 4.68 (d, *J* = 12.1 Hz, 1H), 4.62–4.52 (m, 2H), 4.47–4.37 (m, 2H), 4.02 (d, *J* = 2.4 Hz, 1H), 3.75–3.66 (m, 1H), 3.67–3.49 (m, 3H), 2.02 (s, 3H), 1.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 171.5,

170.5, 138.3, 137.9, 137.8, 137.8, 137.7, 137.7, 128.5, 128.3, 128.3, 128.1, 128.0, 127.9, 127.8, 127.6, 127.6, 80.2, 78.6, 74.9, 74.8, 73.6, 73.0, 72.4, 71.3, 67.8, 23.5, 21.0; HRMS Calcd for $C_{31}H_{36}NO_7$ [M + H]⁺ = 534.2492; found 534.2492.

(2R,3R,4S,5R,6R)-2-azido-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-3-yl acetate 26:

To a cooled solution of 7b (100 mg, 0.24 mmol), TMSN₃ (95 µL,0.72 mmol) and PhI(OAc)₂ (78 mg,0.24

mmol) in dry CH_2Cl_2 (5 mL) at -30 °C under N_2 atmosphere was added TMSOTf (13 μ L, 0.10 mmol). The reaction mixture was stirred at this temperature for 30 min. On consumption of starting material (TLC monitoring) the reaction mixture was quenched with satd. aq. NaHCO₃ (3 mL). Extraction was done with CH₂Cl₂ (3

× 10 mL), and the combined organic extracts were washed with water (1 × 10 mL) and brine (1 × 10 mL), and then dried over Na₂SO₄. Concentration in vacuo gave a crude residue which was purified by silica gel column chromatography with hexane:EtOAc eluent afforded **26** in 19% (24 mg) and **27** in 37% 48 mg (72 mg, 56 % overall yield) as a colorless oil. $R_f = 0.40$ (hexane/EtOAc, 8:2); data for **26** $[\alpha]_D^{28} = -6.0$ (*c* 0.4, CH₂Cl₂); IR (neat) v_{max} /cm⁻¹ 3110, 3071, 3022, 2872, 2111, 1758, 1489, 1460, 1365, 1221, 1126, 936,732, 692; ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.22 (m, 13H), 7.20–7.14 (m, 2H), 4.96 (t, *J* = 9.1 Hz, 1H), 4.78 (dd, *J* = 11.1, 8.9 Hz, 2H), 4.66 (d, *J* = 11.5 Hz, 1H), 4.61–4.49 (m, 3H), 4.43 (d, *J* = 8.8 Hz, 1H), 3.73–3.71 (m, 2H), 3.70–3.66 (m, 1H), 3.64 (d, *J* = 9.1 Hz, 1H), 3.54 (ddd, *J* = 9.6, 3.9, 2.3 Hz, 1H), 1.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.3, 137.9, 137.8, 137.7, 128.4, 128.3, 128.0, 128.0, 127.9, 127.8, 127.7, 127.5, 87.9, 82.7, 77.4, 75.1, 75.0, 73.4, 72.5, 68.2, 20.7; HRMS Calcd for C₂₉H₃₁N₃NaO₆ [M + Na]⁺ = 540.2111; found 540.2108.

(3R,4R,5S,6R)-3-azido-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-ylacetate 27:

 $R_{\rm f} = 0.40$ (hexane/EtOAc, 8:2); IR (neat) $v_{\rm max}$ /cm⁻¹ 3088, 3063, 3031, 2917, 2867, 2112, 1756, 1496, 1454, 1370,1321, 1222, 1138, 1091, 1046, 1027, 932, 737, 698. ¹H NMR (500 MHz, OBn $CDCl_3$) δ 7.39–7.21 (m, 28H), 7.20–7.10 (m, 4H), 6.25 (d, J = 3.6 Hz, 1H), 5.46 BnO[°] (d, J = 8.3 Hz, 1H), 4.89 (d, J = 4.8 Hz, 2H), 4.86 (s, 1H), 4.84-4.81 (m, 2H), 4.84-4.8BnO N₃ OAc 4.81-4.76 (m, 2H), 4.61 (dd, J = 12.1, 6.3 Hz, 2H), 4.54 (dd, J = 13.8, 8.9 Hz, 3H), 4.47 (dd, J = 12.1, 8.4 Hz, 3H), 3.97–3.90 (m, 2H), 3.87–3.79 (m, 3H), 3.78 (d, J = 2.1 Hz, 1H), 3.73 (ddd, J = 11.0, 7.1, 1.7 Hz, 3H), 3.65 (d, J = 10.9 Hz, 1H), 3.60 (d, J = 3.7 Hz, 1H), 3.59-3.55 (m, 1H), 3.59-3.55 (m, 2H), 3.59-3.55 (m, 2H),3.53 (dd, J = 10.1, 6.0 Hz, 2H), 2.17 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 169.0, 137.8, 137.7, 128.6, 128.5, 128.5, 128.2, 128.1, 128.1, 128.0, 127.9, 127.8, 93.0, 90.7, 83.1, 80.5, 77.5, 75.8, 75.7, 75.8, 75.3, 75.1, 73.7, 73.6, 73.2, 67.9, 65.1, 62.7, 21.1, 21.0; HRMS Calcd for C₂₉H₃₅N₄O₆ [M $+ NH_4$ ⁺ = 535.2557; found 535.2559.

(2R,3R,4S,5R,6R)-2-acetamido-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-3-yl acetate 28:

To a stirred solution of 26 (24 mg, 0.04 mmol) in acetonitrile/ethanol (1:1, 2 mL) was added

tetrathiomolybdate (19 mg, 0.04 mmol) and stirred at room temperature for 10 h. Upon consumption of starting material (TLC monitoring) the solvent was evaporated under reduced pressure. The black residue was extracted with CH_2Cl_2 /ether (1:10, 4 X 5 mL) and filtered through a pad of Celite. The solvent

was evaporated to give the glycosyl amine (16 mg) which was acetylated with acetic anhydride (3 μL, 0.03 mmol) and Et₃N (4 μL, 0.03 mmol) in dry DCM at 0 °C. The reaction mixture was stirred for 1 h and upon consumption of starting material (TLC monitoring) the reaction mixture was diluted with DCM (30 mL), washed with saturated aqueous NaHCO₃ (2 X 5 mL), water (5 mL), brine (5 mL), and then dried over Na₂SO₄. The crude residue was purified by silica gel column chromatography with hexane:EtOAc as eluent to afford **28** in 80 % yield (14 mg) as a colourless oil. $R_{\rm f}$ =0.20 (hexane / EtOAc, 6:4); [α]_D²⁸ = + 26.0 (*c* 0.4, CH₂Cl₂); IR (neat) ν_{max} /cm⁻¹ 3318, 2968, 2947, 1737, 1668, 1442, 1379, 1257, 1068, 1034, 726,679; ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.20 (m, 12H), 7.13 (dd, *J* = 6.9, 2.6 Hz, 2H), 6.30 (d, *J* = 9.3 Hz, 1H), 5.11 (t, *J* = 9.4 Hz, 1H), 4.90–4.74 (m, 3H), 4.67 (dd, *J* = 26.1, 11.8 Hz, 2H), 4.49 (dd, *J* = 18.76, 11.4 Hz, 2H), 3.82–3.72 (m, 3H), 3.58–3.52 (m, 1H), 1.96 (s, 3H), 1.94 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 170.5, 138.2, 137.9, 137.8, 132.1, 130.8, 128.9, 128.6, 128.5, 128.1, 128.0, 127.9, 127.9, 127.8, 127.6, 83.2, 78.3, 77.6, 76.5, 75.5, 75.1, 73.6, 73.2, 68.1, 23.6, 23.4, 21.0, 20.8; HRMS Calcd for C₃₁H₃₆NO₇[M + H]⁺ = 534.2492; found 534.2494.

(2S,3S,4R,5R)-2-azido-4,5-bis(benzyloxy)tetrahydro-2H-pyran-3-yl acetate 29:

Compound 29 was prepared from 10b (100 mg, 0.33 mmol) using the procedure described for 26 in 56%

yield (75 mg) as a colourless oil; $R_f = 0.60$ (hexane /EtOAc, 8:2); $[\alpha]_D^{28} = +15.4$ (*c* 0.2, CH₂Cl₂); IR(neat) v_{max} cm⁻¹ 3018, 2941, 2885, 2117, 1764, 1474, 1452, 1374, 1312, 1129, 1086, 934; ¹H NMR (500 MHz, CDCl₃) δ 7.36–7.27 (m, 13H), 5.27–5.21 (m, 1H), 4.70–4.57 (m, 5H), 4.53 (dd, J = 9.6, 2.5 Hz, 2H), 4.14 (dd, J = 12.4,

4.3 Hz, 1H), 4.10–4.03 (m, 1H), 3.76 (t, J = 4.5 Hz, 1H), 3.57 (dd, J = 8.3, 3.1 Hz, 1H), 3.45 (dd, J =

12.4, 1.8 Hz, 1H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 137.9, 137.7, 128.4, 127.8, 127.8, 127.6, 88.3, 77.0, 71.7, 71.6, 71.5, 71.4, 69.9, 64.3, 20.9; HRMS Calcd for C₂₁H₂₇N₄O₅ [M + NH₄]⁺ = 415.1981 found, 415.1981.

(2R,3S,4R,5S,6R)-2-(acetoxymethyl)-6-azido-5-hydroxytetrahydro-2H-pyran-3,4-diyl diacetate 30:

To a cooled solution of 6 (100 mg, 0.37 mmol), TMSN₃ (145 µL, 1.10 mmol) and PhI(OAc)₂ (120 mg,

0.37 mmol) in dry CH₂Cl₂ (5 mL) at -30 °C under N₂ atmosphere was added TMSOTf (67 μ L, 0.37 mmol). The reaction mixture was stirred at this temperature for 30 min. On consumption of starting material (TLC monitoring) the reaction mixture was quenched with satd. aq. NaHCO₃ (3 mL). Extraction was

done with CH₂Cl₂ (3 × 10 mL), and the combined organic extracts were washed with water (1 × 10 mL) and brine (1 × 10 mL), and then dried over Na₂SO₄. Concentration in vacuo gave a crude residue which was purified by silica gel column chromatography with hexane:EtOAc eluent afforded **30** in 68% yield (83 mg) as a colorless oil. $R_f = 0.40$ (hexane/EtOAc, 7:3); $[\alpha]_D^{28} = -1.0$ (*c* 0.6, CH₂Cl₂); IR (neat) v_{max}/cm^{-1} 3562, 2925, 2117, 1746,1373, 1241, 1084. ¹H NMR (400 MHz, CDCl₃) δ 5.42–5.37 (m, 1H), 4.93 (t, *J* = 3.4 Hz, 1H), 4.56 (s, 1H), 4.22 (d, *J* = 6.7 Hz, 2H), 4.02–3.96 (m, 2H), 2.74–2.67 (m, 1H), 2.19 (s, 3H), 2.10 (s, 3H), 2.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 169.9, 169.4, 87.7, 73.6, 69.9, 69.0, 66.2, 61.3, 20.7; HRMS Calcd for C₁₂H₂₁N₄O₈ [M + NH₄]⁺ = 349.1359; found 349.1369.

(2R,3S,4S,5S,6R)-2-(acetoxymethyl)-6-azido-5-((tert-butyldimethylsilyl)oxy)tetrahydro-2H-pyran-3,4-diyl diacetate 31:

To a solution of 30 (100 mg, 0.30 mmol) in dry DMF (5 mL) at room temperature was added imidazole

(25 mg, 0.36 mmol). The solution was stirred for 10 min. and then TBDMSCl (55 mg, 0.36 mmol) was added to it and stirred for two hours room temperature. Satd. aq. NH₄Cl was added and the reaction mixture extracted with EtOAc (2 x 10 mL). The organic layers were combined, washed with brine, dried over Na₂SO₄,

filtered, and concentrated under reduced pressure. The resulting oil was purified by column chromatography with hexane:EtOAc as eluent to afford **31** in 72 % yield (96 mg). $R_f = 0.70$ (hexane/EtOAc, 8:2); $[\alpha]_D^{28} = +38$ (*c* 0.3, CH₂Cl₂); IR (neat) v_{max} /cm⁻¹ 2927, 2115, 1253, 1068, 851, 768; ¹H NMR (400 MHz, CDCl₃) δ 5.24–5.21 (m, 1H), 5.02–4.95 (m, 1H), 4.84 (dd, J = 6.8, 4.7 Hz, 1H), 4.20–4.06 (m, 2H), 3.83–3.74 (m, 1H), 2.14 (s, 3H), 2.04 (s, 3H), 2.00 (s, 3H), 1.94 (m, 1H), 0.91 (s, 9H), 0.13 (d, J = 6.7 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.5, 170.1, 95.1, 71.1, 68.6, 65.4, 62.2, 34.6, 25.8, 20.9, 20.8, 20.7, 18.1, -4.1, -5.0; HRMS Calcd for C₁₈H₃₅N₄O₈Si [M + NH₄]⁺ = 463.2224; found 463.2231.

(2R,3S,4S,5S,6R)-2-(acetoxymethyl)-6-azidotetrahydro-2H-pyran-3,4,5-triyl triacetate 32:

To a stirred solution of 30 (100 mg, 0.30 mmol) in dry CH₂Cl₂ (2 mL) was added acetic anhydride (28

 μ L, 0.30 mmol) and Et₃N (42 μ L, 0.30 mmol) at 0 °C. The reaction mixture was stirred for 1.5 h and upon consumption of starting material (TLC monitoring) it was diluted with dichloromethane (3 mL), washed with satd. aq. NaHCO₃ (2 x 3 mL), water (3 mL), brine (3 mL), and dried over Na₂SO₄. The crude residue was

purified by silica gel column chromatography with hexane: EtOAc as eluent to afford 32 in 85 % yield (96

mg) as a colorless oil. $R_f = 0.50$ (hexane/EtOAc, 7:3); $[\alpha]_D^{28} = +15.1$ (*c* 0.2, CH₂Cl₂); IR (neat) v_{max} /cm⁻¹ 3562, 2932, 2111, 1744, 1373, 1244; ¹H NMR (400 MHz, CDCl₃) δ 5.35–5.29 (m, 2H), 5.08 (t, *J* = 3.6 Hz, 1H), 4.77 (d, *J* = 1.3 Hz, 1H), 4.25 (dd, *J* = 6.5, 1.8 Hz, 2H), 4.07–4.01 (m, 1H), 2.18 (s, 3H), 2.15 (s, 3H), 2.07 (s, 3H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 169.9, 169.2, 169.1, 87.7, 77.4, 77.1, 76.8, 73.8, 72.4, 70.5, 67.7, 61.5, 20.5, 20.4; HRMS Calcd for C₁₄H₂₃N₄O₉ [M + NH₄]⁺ = 391.1465; found 391.1461.

((2R,3S)-3-acetoxy-6-azido-3,6-dihydro-2H-pyran-2-yl)methyl acetate 33:

To a cooled solution of 8a (100 mg, 0.37 mmol), TMSN₃ (145 µL, 1.10 mmol) and PhI(OAc)₂ (120 mg,

Aco

0.37 mmol) in dry CH₂Cl₂ (5 mL) at -30 °C under N₂ atmosphere was added TMSOTF (67 μ L, 0.37 mmol). The reaction mixture was stirred at this temperature for 30 min. On consumption of starting material (TLC monitoring) the reaction mixture was

uenched with satd. aq. NaHCO₃ (3 mL). Extraction was done with CH₂Cl₂ (3 × 10 mL), and the combined organic extracts were washed with water (1 × 10 mL) and brine (1 × 10 mL), and then dried over Na₂SO₄. Concentration in vacuo gave a crude residue which was purified by silica gel column chromatography with hexane:EtOAc as eluent to afford **33** in 76 % yield (71 mg, α : β = 60:40) as a colourless oil. R_f = 0.60 (hexane/EtOAc, 7:3); IR (neat) v_{max} /cm⁻¹ 3012, 2987, 2113, 1738, 1359, 1231, 1062, 921, 758, 675; ¹H NMR (400 MHz, CDCl₃) δ 6.53 (d, *J* = 5.9 Hz, 2H), 5.96 (dt, *J* = 10.4, 1.3 Hz, 1H), 5.82–5.76 (m, 1H), 5.60–5.55 (m, 1H), 5.32 (dd, *J* = 9.5, 1.8 Hz, 1H), 5.11–5.06 (m, 2H), 4.89 (d, *J* = 5.9 Hz, 2H), 4.40–4.36 (m, 2H), 4.32 (d, *J* = 2.2 Hz, 2H), 4.29–4.21 (m, 10H), 4.14–4.08 (m, 1H), 2.15 (s, 7H), 2.11 (d, *J* = 2.5 Hz, 7H), 2.08 (s, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 170.5, 170.5, 170.1, 169.6, 169.4, 146.9, 145.7, 129.6, 126.3, 98.0, 96.4, 84.2, 74.3, 70.5, 68.7, 67.9, 67.4, 64.5, 62.5, 61.7, 61.4, 57.6, 53.3, 20.9, 20.7, 20.6, 20.5; HRMS Calcd for C₁₀H₁₃N₃NaO₅ [M + Na]⁺ = 278.0753; found 278.0761.

(3R,4R,5R,6R)-3-azido-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-ol 34:

Benzylamine (159 µL, 1.45 mmol) was added to the stirred solution of 3 (500 mg, 0.93 mmol) in THF (10

mL) at rt. After 24 h, the mixture was diluted with ethyl acetate (25 mL) and washed with 30% aq. citric acid solution (2 x 10 mL). Then it was washed with brine (10 mL), dried over Na_2SO_4 , filtered and concentrated in vacuo. The residue was purified by column chromatography (eluents: hexane:ethyl acetate) to afford

the desired **34** in 72% (330 mg) as a colorless oil; $R_f = 0.50$ (hexane/EtOAc, 7:3); IR (neat) v_{max} /cm⁻¹ 3475, 2923, 2869, 2114, 1750, 1454, 1367, 1222, 1103, 1082, 736, 697. ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.20 (m, 35H), 5.26 (d, J = 3.1 Hz, 1H), 4.90–4.86 (m, 1H), 4.86–4.82 (m, 1H), 4.70 (dd, J = 7.0, 4.8 Hz, 3H), 4.67 (d, J = 2.0 Hz, 1H), 4.61–4.54 (m, 2H), 4.54–4.49 (m, 2H), 4.47 (d, J = 3.5 Hz, 2H), 4.44 (d, J = 4.2 Hz, 1H), 4.41 (d, J = 2.8 Hz, 1H), 4.40–4.34 (m, 1H), 4.14 (t, J = 6.5 Hz, 1H), 3.98–3.92 (m, 2H), 3.90 (dd, J = 4.1, 2.1 Hz, 2H), 3.88–3.81 (m, 2H), 3.77 (dd, J = 10.3, 8.0 Hz, 1H), 3.70–3.63 (m, 1H), 3.63–3.56 (m, 2H), 3.56–3.44 (m, 2H), 3.40 (dt, J = 9.0, 4.4 Hz, 2H), 3.31 (dd, J = 10.3, 2.8 Hz, 1H), 2.66 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 137.8, 137.7, 128.6, 128.4, 128.2, 128.1, 128.1, 128.0, 127.8, 127.5, 88.6, 80.2, 76.0, 74.7, 73.7, 72.6, 72.2, 70.3, 68.4, 60.5; HRMS Calcd for C₂₇H₃₀N₃O₅ [M + H]⁺ = 476.2185; found 476.2181.

(3R,4R,5R,6R)-3-azido-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)-2-(((2R,3R,4S,5R,6R)-3,4,5-tris (benzyloxy)-6-(phenylthio)tetrahydro-2H-pyran-2-yl)methoxy)tetrahydro-2H-pyran 37:

DBU (9 µL, 0.06 mmol) was added to a stirred solution of CCl₃CN (60 µL, 0.6 mmol) and 34 (100 mg,

0.20 mmol) in dry CH₂Cl₂ (3 mL) under nitrogen at 0 °C and stirred for 2 h. On consumption of starting material (TLC monitoring) the reaction mixture was diluted with CH₂Cl₂ (5 ml) and the combined organic extracts were washed with water (1 × 10 mL) and brine (1 × 10 mL), and then dried over Na₂SO₄. Concentration in vacuo gave a crude residue which was purified by silica gel

column chromatography with hexane: EtOAc as eluent afforded 35 in 76% yield (99 mg) as colorless oil. To a mixture of 35 (100 mg, 0.16 mmol), compound 36 (88 mg, 0.16 mmol) and freshly activated molecular sieves (4Å, 50 mg) in dry CH₂Cl₂ (4 mL) at -30 °C under nitrogen was added TMSOTf (6 μ L, 0.03 mmol) and stirred for 35 min at same temperature. Upon consumption of starting material (TLC monitoring) the solids were filtered off through a pad of Celite and washed with CH₂Cl₂ (5 mL). The combined filtrate was washed with satd. aq. NaHCO₃ (2 x 5 mL) and water (2 x 5 mL). The organic phase was separated, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (ethyl acetate - hexane gradient elution) to afford 37 in 76% (123 mg) as a colorless oil $R_{\rm f} = 0.60$ (hexane/EtOAc, 7:3); IR (neat) $v_{\rm max}$ /cm⁻¹ 2932, 2841, 2111, 1735, 1472, 1117, 1034, 721. ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 7.5 Hz, 2H), 7.43–7.36 (m, 6H), 7.36–7.17 (m, 38H), 5.03 (d, J = 2.7 Hz, 1H), 4.92–4.81 (m, 6H), 4.75–4.70 (m, 1H), 4.69–4.62 (m, 3H), 4.54 (dt, J =11.4, 8.3 Hz, 3H), 4.47–4.39 (m, 2H), 3.97 (d, J = 11.0 Hz, 2H), 3.91 – 3.83 (m, 3H), 3.80 (dd, J = 9.5, 2.7 Hz, 3H), 3.71 (t, J = 8.5 Hz, 1H), 3.60–3.46 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 138.1, 137.7, 133.9, 131.8, 129.0, 128.7, 128.6, 128.6, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.4, 98.5, 87.3, 86.9, 80.8, 78.7, 78.0, 77.4, 75.94, 75.5, 75.1, 74.9, 73.5, 72.2, 69.5, 68.7, 66.7, 60.0; HRMS Calcd for $C_{60}H_{62}N_3O_9S [M + H]^+ = 1000.4207$; found 1000.4202.

1-((2S,3R,4R,5R,6R)-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)-2-(((2R,3R,4S,5R,6R)-3,4,5-tris (benzyloxy)-6-(phenylthio)tetrahydro-2H-pyran-2-yl)methoxy)tetrahydro-2H-pyran-3-yl)-4-((((3aR,5R,6S,7S,7aR)-6,7-dimethoxy-2,2-dimethyl-tetrahydro-3aH-[1,3]dioxolo[4,5-b]pyran-5-yl) methoxy)methyl)-1H-1,2,3-triazole 38:

To a solution of **37** (50 mg,0.05 mmol) and **14** (15 mg, 0.05 mmol) in 1:1 ratio of $H_2O/EtOH$ (2 mL) was added sodium ascorbate (4.3 mg, 0.02 mmol) and copper(II) sulfate pentahydrate (2 mg, 0.007 mmol). The heterogeneous mixture was stirred vigorously at 60 °C for 9 h. Upon consumption of starting material (TLC monitoring) the reaction mixture was diluted with 5 mL of water and extracted with EtOAc (3 × 5 mL). The combined organic extracts were washed with brine (1 × 5 mL) and then dried over Na₂SO₄. Concentration in vacuo gave a

crude residue which was purified by silica gel column chromatography with hexane:EtOAc as eluent to afford **38** in 70% yield (45 mg) as a colorless oil; $R_f = 0.40$ (hexane/EtOAc, 7:3); IR (neat) v_{max} /cm⁻¹ 2941, 2117, 1731, 1464, 1122, 10363; ¹H NMR (500 MHz, CDCl₃) δ 7.55 (s, 1H), 7.48 (d, J = 7.5 Hz, 2H), 7.38 (d, J = 6.9 Hz, 2H), 7.36–7.22 (m, 28H), 7.20 (dd, J = 6.9, 5.7 Hz, 3H), 7.05 (d, J = 6.9 Hz, 2H), 5.53 (d, J = 5.0 Hz, 1H), 5.32 (dd, J = 11.2, 3.4 Hz, 1H), 5.13 (d, J = 3.4 Hz, 1H), 4.95–4.86 (m, 3H), 4.83–4.69 (m, 4H), 4.63 (dd, J = 18.0, 11.1 Hz, 2H), 4.57–4.50 (m, 4H), 4.49–4.37 (m, 3H), 4.31–4.24 (m, 3H), 4.18–4.10 (m, 2H), 4.06 (s, 1H), 3.98 (t, J = 6.0 Hz, 1H), 3.76 (dd, J = 11.4, 5.1 Hz, 1H),

3.71 (dd, J = 10.3, 5.3 Hz, 1H), 3.69 - 3.65 (m, 1H), 3.65 - 3.54 (m, 5H), 3.37 - 3.30 (m, 2H), 3.17 (t, J = 3.54 (m, 5H)), 3.37 - 3.30 (m, 2H), 3.17 (t, J = 3.54 (m, 5H)), 3.37 - 3.30 (m, 2H))9.4 Hz, 1H), 1.45 (s, 3H), 1.40 (s, 3H), 1.28 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 144.7, 138.5, 138.3, 138.0, 137.2, 131.9, 129.1, 128.7, 128.6, 128.6, 128.5, 128.3, 128.0, 127.9, 127.8, 123.1, 111.8, 109.3, 108.6, 98.1, 96.4, 87.6, 86.6, 81.1, 78.7, 78.3, 75.8, 75.0, 73.6, 73.2, 72.1, 71.3, 70.8, 69.9, 69.4, 68.7, 66.3, 66.6, 64.8, 60.6, 56.2, 26.2, 26.1, 25.0, 24.5; HRMS Calcd for $C_{74}H_{84}N_3O_{15}S [M + H]^+ = 1286.5623;$ found 1286.5623.

(2S,3S,4S,5R)-2-azido-4,5-bis(benzyloxy)tetrahydro-2H-pyran-3-ol 39:

To a solution of 29 (500 mg, 1.25 mmol) in dry MeOH (20 mL) at 0 °C was added a catalytic amount of

BnO

NaOMe. The mixture was stirred for 1 h at room temperature and after completion of reaction (TLC monitoring) MeOH was evaporated, extracted with EtOAc (3 \times 20 mL) and the organic layer washed with water and brine, and dried over Na₂SO₄. Evaporation of the solvent followed by purification using column chromatography

gave **39** in 70% yield (312 mg) as a colorless oil; $R_{\rm f} = 0.45$ (hexane/EtOAc, 7:3); $[\alpha]_D^{28} = +45.4$ (c 0.2, CH₂Cl₂); IR (neat) v_{max} /cm⁻¹: 3321, 2117, 1451, 1361, 1069, 1021, 932, 768; ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.22 (m, 9H), 4.74 (d, J = 12.4 Hz, 1H), 4.62 (t, J = 11.8 Hz, 2H), 4.51 (d, J = 11.9 Hz, 2H) 1H), 4.44 (d, J = 8.3 Hz, 1H), 4.15 (dd, J = 13.0, 2.2 Hz, 1H), 3.97–3.86 (m, 1H), 3.75 (s, 1H), 3.40 (ddd, J = 13.0, 2.2 Hz, 1H), 3.97–3.86 (m, 1H), 3.75 (s, 1H), 3.40 (ddd, J = 13.0, 2.2 Hz, 1H), 3.97–3.86 (m, 1H), 3.75 (s, 1H), 3.40 (ddd, J = 13.0, 2.2 Hz, 1H), 3.97–3.86 (m, 1H), 3.75 (s, 1H), 3.40 (ddd, J = 13.0, 2.2 Hz, 1H), 3.97–3.86 (m, 1H), 3.75 (s, 1H), 3.40 (ddd, J = 13.0, 2.2 Hz, 1H), 3.97–3.86 (m, 1H), 3.75 (s, 1H), 3.40 (ddd, J = 13.0, 2.2 Hz, 1H), 3.97–3.86 (m, 1H), 3.75 (s, 1H), 3.40 (ddd, J = 13.0, 2.2 Hz, 1H), 3.97–3.86 (m, 1H), 3.75 (s, 1H), 3.40 (ddd, J = 13.0, 2.2 Hz, 1H), 3.97–3.86 (m, 1H), 3.97 (s, 1H), 3.40 (ddd, J = 13.0, 2.2 Hz, 1H), 3.97–3.86 (m, 1H), 3.97 (s, 1H), 3.40 (ddd, J = 13.0, 2.2 Hz, 1H), 3.97–3.86 (m, 1H), 3 J = 9.3, 2.2, 0.9 Hz, 2H), 2.48 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 137.6, 128.6, 128.5, 128.1, 128.0, 128.0, 127.9, 90.9, 80.4, 71.7, 71.4, 70.3, 65.5; HRMS Calcd for $C_{19}H_{21}N_3NaO_4$ [M + Na]⁺ = 378.1430; found 378.1432.

(2S,3S,4R,5R)-2-azido-4,5-bis(benzyloxy)-3-(methoxymethoxy)tetrahydro-2H-pyran 40:

To a solution of **39** (300 mg, 0.84 mmol) dissolved in dry CH₂Cl₂ (10mL) was added N.N diisopropylethylamine (DIPEA) (77 µL, 1.00 mmol) and MOM-Cl (175 µL, 1.00 MOMO mmol) at 0°C followed by addition of a catalytic amount of DMAP. The mixture was stirred at ambient temperature for 16 h and then diluted with CH₂Cl₂ (10 mL). BnÒ The organic layer was washed with satd. aq. NaHCO₃ (10 mL), and brine (10 mL), and dried over Na₂SO₄. The crude product was purified by column chromatography

with hexane: EtOAc as eluent to afford 40 in 80% yield (270 mg) as a colorless oil; $R_{\rm f} = 0.50$ (hexane/EtOAc, 7:3); $[\alpha]_D^{28} = +26.5$ (c 0.3, CH₂Cl₂); IR (neat) v_{max} /cm⁻¹: 3314, 2111, 1438, 1061, 932, 757; ¹H NMR (500 MHz, CDCl₃) δ 7.40–7.08 (m, 9H), 4.87–4.81 (m, 1H), 4.75 (t, J = 5.2 Hz, 1H), 4.72-4.65 (m, 1H), 4.65 - 4.54 (m, 3H), 4.52 (d, J = 7.3 Hz, 1H), 4.11 (dd, J = 12.4, 3.7 Hz, 1H), 3.85 (t, J = 7.9 Hz, 1H), 3.73 (s, 1H), 3.51 (dd, J = 8.5, 3.1 Hz, 1H), 3.43–3.38 (m, 3H); ¹³C NMR (125 MHz, 125 MHz), CDCl₃) δ 143.5, 143.4, 133.9, 133.3, 133.2, 133.1, 103.0, 95.5, 85.0, 82.8, 82.5, 82.3, 80.1, 69.8, 61.6; HRMS Calcd for $C_{21}H_{26}N_3O_5 [M + H]^+ = 400.1872$; found 400.1870.

N-((2S,3S,4R)-3,4-bis(benzyloxy)-5-hydroxy-2-(methoxymethoxy)pentyl)-4-nitrobenzene-sulfonamide 41:

To a suspension of LiAlH₄ (71 mg, 1.87 mmol) in dry THF (3 mL), was added a solution of 40 (250

mg, 0.62 mmol) in THF (3 mL) very slowly at 0° C. Then the reaction mixture was allowed to come at room temperature and refluxed for 5 h. It was then cooled to 0°C and quenched with EtOAc (5 mL) followed by 1N NaOH (5 mL) solution. After stirring for 10

min the resulting white precipitate was removed by filtration through a celite pad and the filtrate extracted with EtOAc (3 x 10 mL). The combined organic layer was washed with water followed by brine, dried over Na₂SO₄ and concentrated under reduced pressure to get the crude amine (194 mg). To a stirred solution of crude amine (140 mg, 0.37 mmol) in CH₂Cl₂ at 0°C, was added NEt₃ (52 µL, 0.37 mmol), followed by addition of nosyl chloride (82 mg, 0.37 mmol). The reaction mixture was stirred for 2 h at room temperature. On completion of reaction (TLC monitoring), it was quenched by the addition of saturated solution of NH_4Cl (5 mL) and the mixture was extracted with CH_2Cl_2 (2 x 10 mL). The combined organic layer was washed with water (1 x 10 mL), brine (1 x 10 mL) and dried over Na₂SO₄. Solvent evaporation followed by purification through column chromatography with hexane:EtOAc eluent afforded **41** in 84% yield (over two steps 295 mg) as a colourless oil; $R_f = 0.25$ (hexane/EtOAc, 7:3); $[\alpha]_D^{28} = -12.7 (c \ 0.5, \ CH_2Cl_2); \ IR \ (neat) v_{max} \ /cm^{-1}: 3314, 1545, 1438, 1345, 1150, 1054, 941; \ ^1H \ NMR$ (400 MHz, CDCl₃) δ 8.24–8.17 (m, 2H), 7.89–7.82 (m, 2H), 7.36–7.25 (m, 13H), 5.81 (dd, J = 7.7, 3.8 Hz, 1H), 4.75–4.69 (m, 1H), 4.65–4.59 (m, 2H), 4.58–4.51 (m, 2H), 4.43 (dd, J = 20.3, 9.1 Hz, 2H), 3.93 (dt, J = 8.0, 4.1 Hz, 1H), 3.77 (ddd, J = 10.3, 7.7, 2.7 Hz, 2H), 3.69 (dd, J = 6.9, 3.2 Hz, 1H), 3.67 - 3.62 (m, 1H), 3.36 - 3.30 (m, 1H), 3.29 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 145.6, 137.5, 137.5, 137.4, 128.6, 128.6, 128.5, 128.5, 128.4, 128.4, 128.3, 128.3, 128.2, 128.1, 128.1, 128.0, 127.8, 127.8, 127.7, 127.7, 127.6, 127.5, 124.2, 97.8, 78.9, 78.5, 77.5, 74.6, 71.6, 59.3, 55.8, 55.8, 44.6; HRMS Calcd for $C_{27}H_{33}N_2O_9S [M + H]^+ = 561.1907$; found 561.1904

(3R,4R,5R)-3,4-bis(benzyloxy)-5-(methoxymethoxy)-1-((4-nitrophenyl)sulfonyl)piperidine 42:

Triphenylphosphine (89 mg, 0.34 mmol) and diethyl azodicarboxylate (54 µL, 0.34 mmol) were added at

room temperature to a stirred solution of **41** (175 mg, 0.34 mmol) in dry toluene (4 mL). The reaction mixture was stirred for a further 8 h and after completion of reaction (TLC monitoring), solvent was evaporated and the crude product was purified by column chromatography with hexane:EtOAc

eluent afforded **42** in 73% yield (123 mg) as a colorless oil; $R_{\rm f} = 0.50$ (hexane/EtOAc, 7:3); $[\alpha]_D^{28} = -26.4$ (*c* 0.1, CH₂Cl₂); IR (neat) $v_{\rm max}$ /cm⁻¹ 3125, 1538, 1457,1352, 1142, 1054, 941; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, J = 8.7 Hz, 2H), 7.90 (dd, J = 9.0, 2.1 Hz, 2H), 7.38–7.19 (m, 10H), 4.66 (dd, J = 17.2, 9.5 Hz, 2H), 4.61–4.53 (m, 4H), 3.87–3.80 (m, 1H), 3.78 (dd, J = 6.9, 4.5 Hz, 1H), 3.66 (dd, J = 4.8, 2.4 Hz, 1H), 3.59–3.44 (m, 2H), 3.29 (s, 3H), 3.09 (t, J = 10.7 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 150.0, 143.5, 138.1, 137.9, 128.7, 128.6, 128.5, 128.0, 127.9, 127.8, 127.7, 127.6, 124.3, 96.0, 73.1, 72.9, 72.17, 71.5, 55.8, 45.6, 44.7; HRMS Calcd for C₂₇H₃₀N₂O₈S [M + H]⁺ = 542.1723; found 542.1720.

(3R,4R,5R)-3,4-bis(benzyloxy)-5-(methoxymethoxy)piperidine 43:

Potassium carbonate (92 mg, 0.66 mmol) and PhSH (23 µL, 0.22 mmol) were added to a stirred solution

of **42** (120 mg, 0.22 mmol) in dry DMF (4 mL) and stirring continued for 24 h at room temperature. After completion of the reaction it was extracted with diethyl ether (20 mL) and washed with water and brine, and dried with Na₂SO₄. The organic layer was concentrated to provide a crude product which was purified by column

chromatography with hexane:EtOAc as eluent to afford **43** in 68% yield (54 mg) as a colourless oil; $R_f = 0.40$ (hexane/EtOAc,7:3); $[\alpha]_D^{28} = +32.7$ (*c* 0.3, CH₂Cl₂); IR (neat) v_{max} /cm⁻¹ 3378, 1427, 1356, 1159; ¹H NMR (500 MHz, CDCl₃) δ 7.38–7.22 (m, 10H), 4.73 (d, J = 12.1 Hz, 1H), 4.69–4.63 (m, 4H), 4.60 (dd, J = 13.4, 6.5 Hz, 2H), 3.90 (s, 1H), 3.87–3.78 (m, 1H), 3.59 (s, 1H), 3.29 (s, 3H), 2.62 (d, J = 37.1 Hz, 2H), 2.42 (d, J = 12.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 138.8, 138.7, 128.4, 127.8, 127.8, 127.6, 116.3, 96.3, 73.6, 72.6, 71.4, 55.5, 46.1; HRMS Calcd for C₂₁H₂₈NO₄ [M + H]⁺ = 358.2018; found 358.2016.

(3R,5R)-piperidine-3,4,5-triol 44:

Compound 43 (50 mg, 0.14 mmol) was dissolved in dry CH₃OH (2 mL), and Pd(OH)₂/C (10 mg, 20%

w/w) was added to it. The mixture was stirred under 1 atm of H₂ (balloon) overnight, following which 1 N HCl (1 mL) was added, and subsequently the mixture was stirred under 1 atm of H₂ for 32 h. The catalyst was filtered through a Celite bed and washed with MeOH. The solvent was removed under vacuum, and the residue washed

repeatedly with hexane. The compound was purified by washing with excess of 50% EtOAc/Hexane solution. The solvent was decanted, and the residue was dried under vacuum to afford pure **44** (11 mg, 60%) as a white semi solid. which was then analyzed spectroscopically. The data matched well with the literature data.²⁷

¹H-¹H homonuclear decoupling (H-2) NMR spectrum of compound **7a**

¹H-¹H homonuclear decoupling (H-1) NMR spectrum of compound **7a**

¹H-¹H homonuclear decoupling (H-3) spectra of Compound **7a**

nOe spectrum (irradiation of H4) of compound 7a

(Upon irradiation of proton H-4, no enhancement was observed for proton H-2 indicating that H-2 and H-4 are trans-oriented)

nOe spectrum (irradiation of H-1) of compound 7a

(Upon irradiation of proton H-1, no enhancement was observed for proton H-3 indicating that H-1 and H-3 are not cis-oriented)

nOe spectrum (irradiation of H-3) of compound 7a

(Irradiation of proton H-3 led to the enhancement of the signal for proton H-5 and no enhancement was observed for proton H-1, indicating that H-1 and H-3 are not cis-oriented)

nOe spectrum (irradiation of H-5) of compound 7a

(Irradiation of proton H-5, led to the enhancement for proton H-3 and no enhancement was observed for proton H-1, indicating that H-1 and H-5 are trans oriented)

¹H-¹H COSY NMR spectrum of compound **7b**

nOe spectrum (irradiation of H-1) of compound 7b

(Upon irradiation of proton H-1, no enhancement was observed for the signals of protons H-3 and H-5)

nOe spectrum (irradiation of H-3) of compound 7b

(Irradiation of proton H-3 led to the enhancement for proton H-5 but no enhancement was observed for the signal for proton H-1, indicating that H-1 and H-3 are trans oriented)

 ^{13}C NMR spectrum of compound 7d

¹H-¹H COSY NMR spectrum of compound **9a**

¹H-¹H homonuclear decoupling (H-1) NMR spectrum of compound **9a**

¹H-¹H homonuclear decoupling (H-2) NMR spectrum of compound **9a**

nOe spectrum (irradiation of H-1) of compound 9a

(Upon irradiation of proton H-1, no enhancement was observed for the signals of protons H-3 and H-5)

nOe spectrum (irradiation of H-4) of compound 9a

(Irradiation of proton H-4 led to the enhancement of signal for proton H-2, indicating that H-2 and H-4 are cis oriented)

nOe spectrum (irradiation of H-3) of compound 9a

(Irradiation of proton H-3 led to the enhancement of signals for proton H-5, and no enhancement was observed for the signal of proton H-1, indicating that H-1 and H-3 are trans oriented)

nOe spectrum (irradiation of H-2) of compound 9a

(Irradiation of proton H-2 led to the enhancement of signal for proton H-4, indicating that H-2 and H-4 are cis oriented)

¹³C NMR spectrum of compound **9c**

1 1

¹H-¹H COSY NMR spectrum of compound **11a**

¹H-¹H homonuclear decoupling (H-1) NMR spectrum of compound **11a**

¹H-¹H homonuclear decoupling (H-4) NMR spectrum of compound **11a**

¹H-¹H homonuclear decoupling (H-3) NMR spectrum of compound **11a**

(Upon irradiation of proton H-3, no enhancement was observed for the signal of proton H-1)

nOe spectrum (irradiation of H-2) of compound 11a

(Upon irradiation of proton H-2, no enhancement was observed for the signal of proton H-4, indicating that H-2 and H-4 are trans oriented)

¹³C NMR spectrum of compound **15**

¹³C NMR spectrum of compound **18**

¹H-¹H COSY NMR spectrum of compound **18**

¹H-¹H homonuclear decoupling (NH) NMR spectrum of compound **18**

¹³C-¹H HETCOR NMR spectrum of compound **18**

¹³C NMR spectrum of compound **19**

¹³C NMR spectrum of compound **21**

¹³C NMR spectrum of compound **22**

¹³C NMR spectrum of compound **25**

¹H-¹H COSY NMR spectrum of compound **26**

¹H-¹H homonuclear decoupling (H-1) NMR spectrum of compound **26**

nOe spectrum (irradiation of H 1) of compound 26

(Irradiation of proton H-1, led to the enhancement for protons H-3 and H-5, indicating that H-1, H-3 and H-5 are cis oriented)

¹³C NMR spectrum of compound **27**

AcO

4

¹H-¹H COSY NMR spectrum of compound **29**

¹H-¹H homonuclear decoupling (H-4) NMR spectrum of compound **29**

¹H-¹H homonuclear decoupling (H-1) NMR spectrum of compound **29**

¹H-¹H COSY NMR spectrum of compound **30**

¹H-¹H homonuclear decoupling (H-4) NMR spectrum of compound **30**

nOe spectrum (irradiation of H-3) of compound 30

(Irradiation of proton H-3, led to the enhancement for protons H-1 and H-5, indicating that H-1, H-3 and H-5 are cis oriented)

nOe spectrum (irradiation of H-4) of compound 30

(Irradiation of proton H-4, led to the enhancement for proton H-2, indicating that H-2 and H-4 are trans oriented)

nOe spectrum (irradiation of H-1) of compound 30

(Irradiation of proton H-1, led to the enhancement for protons H-3 and H-5, indicating that H-1, H-3 and H-5 are cis oriented)

¹³C NMR spectrum of compound **34**

¹³C NMR spectrum of compound **39**

¹³C NMR spectrum of compound **43**

Crystallography.

Compounds **5** and **30** are readily crystallized by slow evaporation of its solution in CDCl₃ and CHCl₃ over a period of 72 h. The crystals of suitable quality were mounted in glass capillaries, cooled to 273 K and the intensity data were collected on a Bruker APEX-II CCD detector system with Mo-sealed Siemens ceramic diffraction tube ($\lambda = 0.71073$) and a highly oriented graphite monochromator operating at 50 kV and 30 mA. The data were collected on a hemisphere mode and processed with SAINT-Plus.¹ Empirical absorption corrections were made using SADABS.¹ The structures were solved by direct methods using Olex2 package and refined by full matrix least-squares method based on F2 using ShelXL (Sheldrick, 2015) program.² All the nonhydrogen atoms were refined anisotropically. The hydrogen atoms were included in the ideal positions with fixed isotropic U values and were riding with their respective nonhydrogen atoms.

Figure 1: X-ray^[3] ORTEP diagram showing 30% probability thermal ellipsoids of compound **5**

2	1		
Identification code	5		
Empirical formula	C27H28N6O4		
Formula weight	500.21		
Temperature	273(2) K		
Wavelength	0.71073 Å		
Crystal system	monoclinic		
Space group	P 2 ₁		
Unit cell dimensions	a = 10.8746(7) Å	<i>α</i> = 90°.	
	b = 9.3560(6) Å	β=108.166(2)°.	
	c = 12.7699(9) Å	$\gamma = 90^{\circ}$.	
Volume	1234.49(14) Å ³		
Ζ	2		
Density (calculated)	1.196 Mg/m ³		
Absorption coefficient	0.094 mm ⁻¹		
F(000)	464		
Theta range for data collection	1.97 to 27.00°.		
Index ranges	-13<=h<=13, -11<=k<=11, -1	5<=l<=16	
Reflections collected	11490		
Independent reflections	5368 [R(int) = 0.0399]		
Completeness to theta = 27.00°	99.9 %		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	5368 / 1 / 298		
Goodness-of-fit on F ²	1.037		
Final R indices [I>2sigma(I)]	R1 = 0.0519, wR2 = 0.1058		
R indices (all data)	R1 = 0.0869, wR2 = 0.1278		
Absolute structure parameter	0.0(12)		
Largest diff. peak and hole	0.221 and -0.270 e.Å ⁻³		

Table 1. Crystal data and structure refinement of compound 5

Figure 1: X-ray^[4] ORTEP diagram showing 30% probability thermal ellipsoids of compound **29.** One $CHCl_3$ molecule have been omitted for clarity.

F	
29	
C21 H23 N3 O5,C1 H1 Cl3	
515.07	
273(2) K	
0.71073 Å	
Orthorhombic	
P2 ₁ 2 ₁ 2 ₁	
a = 9.8335(4) Å	α= 90°.
b = 14.0885(6) Å	β= 90°.
c = 17.7805(9) Å	$\gamma = 90^{\circ}$
2463.30(19) Å ³	
4	
1.294 Mg/m ³	
0.204 mm ⁻¹	
996	
0.2 x 0.16 x 0.14 mm ³	
2.29 to 26.99°.	
	29 C21 H23 N3 O5,C1 H1 Cl3 515.07 273(2) K 0.71073 Å Orthorhombic P2 ₁ 2 ₁ 2 ₁ a = 9.8335(4) Å b = 14.0885(6) Å c = 17.7805(9) Å 2463.30(19) Å ³ 4 1.294 Mg/m ³ 0.204 mm ⁻¹ 996 0.2 x 0.16 x 0.14 mm ³ 2.29 to 26.99°.

1 auto 2. Crystal data and structure remientent of compound 2	Table 2.	Crystal	data and	structure	refinement	of com	pound 2	29
---	----------	---------	----------	-----------	------------	--------	---------	----

Index ranges	-12<=h<=12, -17<=k<=17, -22<=l<=22
Reflections collected	22921
Independent reflections	5371 [R(int) = 0.0468]
Completeness to theta = 26.99°	99.9 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5371 / 0 / 275
Goodness-of-fit on F ²	1.200
Final R indices [I>2sigma(I)]	R1 = 0.0616, $wR2 = 0.1616$
R indices (all data)	R1 = 0.0866, wR2 = 0.1772
Absolute structure parameter	0.07(9)
Largest diff. peak and hole	1.069 and -0.368 e.Å ⁻³

Bruker, SMART, SAINT-Plus, SADABS. Bruker Axs Inc. 1998 Madison, Wisconcin, USA
G. M. Sheldrick, Acta Cryst., 2015, C 71, 3.

3) CCDC 1554252 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www. ccdc.cam.ac.uk/data_request/cif.

4) CCDC 1554251 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www. ccdc.cam.ac.uk/data_request/cif.