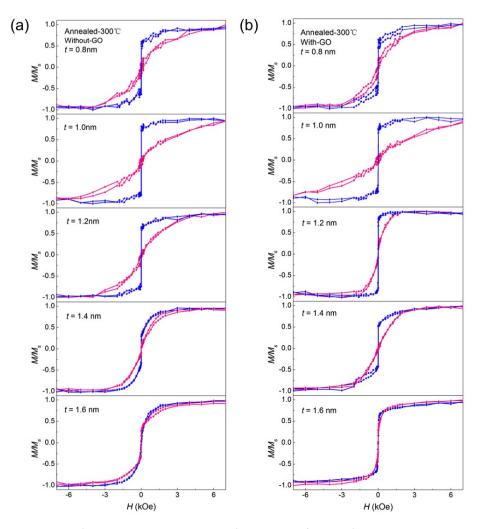
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supplementary Information:

Tailoring perpendicular magnetic anisotropy with graphane oxide membranes

Keyu Ning^{a,b,} Houfang Liu^{*a,b}, Linsen Li ^{a,b}, Huanglong Li^c, Jiafeng Feng^d, Baishun Yang^d, Xiao liu ^{a,b}, Yuxing Li ^{a,b}, Yanhui Chen^e, Hongxiang Wei^d, Xiufeng Han^d, Shengcheng Mao^e, Xixiang Zhang^f, Yi Yang ^{a,b}, and Tian-ling Ren^{* a,b}


^aInstitute of Microelectronics, Tsinghua University, Beijing 100084, China ^bTsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China

^cDepartment of Precision Instrument, Tsinghua University, Beijing 100084, China ^dBeijing National Laboratory of Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Science, Chinese Academy of Sciences, Beijing 100190, China ^eInstitute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, China

^fPhysical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 239955, Kingdom of Saudi Arabia

M-H loops for CoFeB/MgAIO_x stacks with and without GO membranes after annealing:

Figure S1 shows some samples with annealing temperature at 300 °C. It is obviously that the PMA were enhanced strongly for both samples with/without GO membranes. For the samples with $t_{\text{CoFeB}} = 0.8$ to 1.4 nm, the hysteresis loops with increased SQ for both samples with/without GO membranes. It is obvious that samples with $t_{\text{CoFeB}} = 1.4$ nm without GO membranes and the samples with $t_{\text{CoFeB}} = 1.6$ nm with GO membranes, the easy axis turns from in-plane to out-of-plane after annealing. Also, the in-plane saturation field increases for $t_{\text{CoFeB}} = 0.8$ to 1.4 nm the samples with GO compared to the samples without GO. While for samples with t=1.6 nm with GO, the easy axis turns from in-plane to out-of-plane. These results indicate that the GO membranes can significantly improve the PMA of CoFeB thin film.

Figure S1. In-plane (red line with solid circles) and out-of-plane (blue line with solid circles) magnetization curves for samples after annealing at 300 °C with (a) and without (b) GO membranes with the thickness of CoFeB layer of t_{CoFeB} =0.8, 1.0, 1.2, 1.4, and 1.6 nm, respectively.