Electronic Supplementary Information

Study on the Relationship between Magnetic Field and Dielectric Properties in Two Ferromagnetic complexes

Li Yang,^a Jing Li,^a Tian-Cheng Pu,^b Ming Kong,^a Jing Zhang^a & You Song^{*a}

^a State Key Laboratory of Coordination Chemistry, Collaborative Innovation
 Center of Advanced Mirostructures, School of Chemistry and Chemical
 Engineering, Nanjing University, Nanjing 210093, China.
 ^b Department of Chemical and Biomolecular Engineering, John Hopkins

University, Baltimore, Maryland 21218, United States

Caption of Content

- **1. Table S1.** Metal–Ligand Bond Lengths (Å) and Angles (°) in Complex **1**.
- **2. Table S2.** Metal–Ligand Bond Lengths (Å) and Angles (°) in Complex **2**.
- **3. Fig. S1** Plot of χ_{M}^{-1} vs T for **1**. The solid line represents the best–fit curve following Curie-Weiss law.
- **4. Fig. S2** Plot of χ_{M}^{-1} vs T for **2**. The solid line represents the best–fit curve following Curie-Weiss law.
- 5. Fig. S3 Plot of *M vs H* for 1 and 2 at 2 K.
- **6. Fig. S4** Temperature dependence of the real ε' part of the dielectric permittivity in the case of no field and different external field for **1**.
- **7. Fig. S5** Temperature dependence of the real ε' part of the dielectric permittivity in the case of no field and different external field for **2**.
- **8. Fig. S6** The model of dielectric permittivity measurements for **1** and **2** under an applied magnetic field.
- 9. Fig. S7 Details of the IR spectra corresponding to spectral range 500-3500 cm⁻¹ for
 (a) 1 and (b) 2.
- **10. Fig. S8** Frequency dependence of (a) the real ε' part and (b) the imaginary ε'' of the dielectric permittivity for **1**
- **11. Fig. S9** Frequency dependence of (a) the real ε' part and (b) the imaginary ε'' of the dielectric permittivity for **2**.
- **12. Fig. S10** Arrhenius plots of $\ln(\tau)$ vs the inverse temperature T^{-1} under an applied magnetic field of 1020 G for **1** and **2**. Red lines show the fit of data to the Arrhenius expression $\tau = \tau_0 \exp(E_a / k_B T)$.
- **13. Fig. S11** Arrhenius plots of $\ln(\tau)$ vs the inverse temperature T^{-1} under an applied magnetic field of 2200 G for **1** and **2**. Red lines show the fit of data to the Arrhenius expression $\tau = \tau_0 \exp(E_a / k_B T)$.
- **14. Fig. S12** Arrhenius plots of $\ln(\tau)$ vs the inverse temperature T^{-1} under an applied magnetic field of 3500 G for **1** and **2**. Red lines show the fit of data to the Arrhenius expression $\tau = \tau_0 \exp(E_a / k_B T)$.
- **15. Fig. S13** Cole-Cole diagram of **1** (a) and **2** (b), plotted using χ_{M} and χ_{M} at different temperature. The solid lines represent the fits to a general Debye model.

 Table S1. Metal–Ligand Bond Lengths (Å) and Angles (°) in Complex 1.

Cr1–01 ⁱ	1.9796(11)	Cr1–O1 ^{iv}	1.9796(11)	Fe1–O2 ^{vii}	2.1174(13)
Cr1–O1 ⁱⁱ	1.9796(11)	Cr1–01 ^v	1.9796(11)	Fe1–O2 ^{viii}	2.1175(13)
Cr1–O1 ⁱⁱⁱ	1.9796(11)	Fe1-02	2.1174(13)	Fe1–O2 ^{ix}	2.1175(13)
Cr1-01	1.9796(11)	Fe1–O2 ^{vi}	2.1174(13)	Fe1–O2 [×]	2.1175(13)
01 ⁱ -Cr1-01 ⁱⁱ	180.00	01 ⁱ -Cr1-01 ^v	88.92(5)	02 ^{vii} –Fe1–O2 ^{ix}	88.76(8)
01 ⁱ -Cr1-01 ⁱⁱⁱ	91.08(5)	01 ⁱⁱ –Cr1–O1 ^v	91.08(5)	02–Fe1–O2 ^x	93.10(6)
01 ⁱⁱ –Cr1–O1 ⁱⁱⁱ	88.92(5)	01 ⁱⁱⁱ –Cr1–O1 ^v	180.0	O2 ^{vi} –Fe1–O2 ^{ix}	93.10(6)
01 ⁱ -Cr1-01	88.92(5)	01 ^{iv} -Cr1-01	180.0	02 ^{vii} –Fe1–O2 ^{ix}	88.76(8)
01 ⁱⁱ –Cr1–O1	91.08(5)	02–Fe1–O2 ^{viii}	85.09(7)	O2 ^{viii} —Fe1—O2 ^{ix}	93.10(6)
01 ⁱⁱⁱ –Cr1–O1	88.92(5)	02–Fe1–O2 ^{ix}	177.48(7)	02–Fe1–O2 [×]	93.10(6)
01 ⁱ -Cr1-01 ^{iv}	91.08(5)	O2 ^{vi} –Fe1–O2 ^{ix}	93.11(6)	O2 ^{vi} –Fe1–O2 ^x	177.47(7)
01 ⁱⁱ –Cr1–O1 ^{iv}	88.92(5)	O2–Fe1–O2 ^{viii}	85.09(7)	02 ^{vii} –Fe1–O2 ^{ix}	88.76(8)
01 ⁱⁱⁱ –Cr1–O1 ^{iv}	91.08(5)	O2 ^{vi} —Fe1—O2 ^{viii}	93.10(6)	O2 ^{viii} –Fe1–O2 ^x	88.76(8)

Symmetry codes: (i) y-1, -x+y, -z; (ii) -y+1, x-y+2, z; (iii) x-y+1, x+1, -z; (iv) -x, -y+2, -z; (v) -x+y-1, -x+1, z; (vi) -y+1, -x+1, -z+1/2; (vii) -x+y, -x+1, z; (viii) x, x-y+1, -z+1/2; (ix) -x+y, y, -z+1/2; (x) -y+1, x-y+1, z; (xi) -y+1, x-y, z; (xii) -x+y+1, -x+1, z.

 Table S2. Metal–Ligand Bond Lengths (Å) and Angles (°) in Complex 2.

		_			
Cr1-01	1.9753(15)	Cr1–O1 ^{xi}	1.9753(15)	Ni1–O2 ^{iv}	2.0530(16)
Cr1–O1 ^{viii}	1.9753(15)	Cr1–O1 ^{xii}	1.9753(15)	Ni1-02 ^v	2.0530(16)
Cr1–O1 ^{ix}	1.9753(15)	Ni1-02	2.0530(16)	Ni1–O2 ^{vi}	2.0530(16)
Cr1–O1 ^x	1.9753(15)	Ni1–O2 ⁱⁱⁱ	2.0530(16)	Ni1–O2 ^{vii}	2.0530(16)
01 ^{viii} –Cr1–O1 ^x	91.39(7)	01 ^{viii} –Cr1–O1 ^{xii}	91.39(7)	02 ⁱⁱⁱ –Ni1–O2	176.63(10)
01 ^{viii} –Cr1–O1 ^{ix}	180.00(8)	01 ^{ix} –Cr1–O1 ^{xii}	88.61(7)	02 ^{iv} -Ni1-02 ^{vi}	93.20(7)
01 ^{ix} –Cr1–O1 ^x	88.61(7)	01 ^x -Cr1-01 ^{xii}	91.39(7)	02 ^v -Ni1-02 ^{vi}	176.63(10)
01 ^{viii} –Cr1–O1 ^{xi}	88.61(7)	01 ^{xi} –Cr1–O1 ^{xii}	180.00(8)	02 ⁱⁱⁱ –Ni1–O2 ^{vi}	89.31(10)
01 ^{ix_} Cr1-01 ^{xi}	91.39(7)	01–Cr1–O1 ^{xii}	88.61(7)	02–Ni1–O2 ^{vi}	93.19(7)
01 ^x Cr101 ^{xi}	88.61(7)	02 ^{iv} -Ni1-02 ^v	89.31(10)	02 ^{iv} -Ni1-02 ^{vii}	176.63(10)
01 ^{viii} –Cr1–O1	88.61(7)	02 ⁱⁱⁱ –Ni1–O2 ⁱⁱⁱ	84.40(10)	02 ^v -Ni1-02 ^{vii}	93.19(7)
01 ^{ix_} Cr1-01	91.39(7)	02 ^v -Ni1-02 ⁱⁱⁱ	93.20(7)	02 ⁱⁱⁱ –Ni1–O2 ^{vii}	93.19(7)
01 ^x Cr101	180.00(8)	02 ^{iv} -Ni1-02	93.20(7)	02–Ni1–O2 ^{vii}	89.31(10)
01 ^{xi} –Cr1–O1	91.39(7)	02 ^v -Ni1-02	84.40(10)	02 ^{vi} –Ni1–O2 ^{vii}	84.40(10)

Symmetry codes: (i) -y+1, x-y, z; (ii) -x+y+1, -x+1, z; (iii) -y+1, -x+1, -z+1/2; (iv) -y+1, x-y+1, z; (v) -x+y, y, -z+1/2; (vi) -x+y, -x+1, z; (vii) x, x-y+1, -z+1/2; (viii) x-y+1, x, -z; (ix) -x+y+1, -x+2, z; (x) -x+2, -y+2, -z; (xi) -y+2, x-y+1, z; (xii) y, -x+y+1, -z.

Fig. S1 Plot of χ_{M}^{-1} vs T for **1**. The solid line represents the best–fit curve following Curie-Weiss law.

Fig. S2 Plot of χ_{M}^{-1} vs T for **2**. The solid line represents the best-fit curve following Curie-Weiss law.

Fig. S3 Plot of *Mvs H* for 1 and 2 at 2 K.

Fig. S4 Temperature dependence of the real ε' part of the dielectric permittivity in the case of no field and different external field for **1**.

Fig. S5 Temperature dependence of the real ε' part of the dielectric permittivity in the case of no field and different external field for **2**.

Fig. S6 The model of dielectric permittivity measurements for **1** and **2** under an applied magnetic field.

Fig. S7 Details of the IR spectra corresponding to spectral range 500-3500 cm⁻¹ for (a) 1 and (b) 2.

Fig. S8 Frequency dependence of (a) the real ε' part and (b) the imaginary ε'' of the dielectric permittivity for **1**.

Fig. S9 Frequency dependence of (a) the real ε' part and (b) the imaginary ε'' of the dielectric permittivity for **2**.

Fig. S10 Arrhenius plots of $\ln(\tau)$ vs the inverse temperature T^{-1} under an applied magnetic field of 1020 G for **1** and **2**. Red lines show the fit of data to the Arrhenius expression $\tau = \tau_0 \exp(E_a / k_B T)$.

Fig. S11 Arrhenius plots of $\ln(\tau)$ vs the inverse temperature T^{-1} under an applied magnetic field of 2200 G for **1** and **2**. Red lines show the fit of data to the Arrhenius expression $\tau = \tau_0 \exp(E_a / k_B T)$.

Fig. S12 Arrhenius plots of $\ln(\tau)$ vs the inverse temperature T^{-1} under an applied magnetic field of 3500 G for **1** and **2**. Red lines show the fit of data to the Arrhenius expression $\tau = \tau_0 \exp(E_a / k_B T)$.

Fig. S13 Cole-Cole diagram of **1** (a) and **2** (b), plotted using χ_{M} ' and χ_{M} " at different temperature. The solid lines represent the fits to a general Debye model.