Supplementary Information

Growth, characterization, and thin film transistor application of CH₃NH₃PbI₃ perovskite on polymeric gate dielectric layers

Jenner H.L. Ngai,‡^{a,b} Johnny K.W. Ho,‡^a Rocky K.H. Chan,^a S.H. Cheung,^a Louis M. Leung^b and S.K. So^{a*}

1. Grazing incidence X-ray diffraction (GIXRD)analysis

Grazing incidence X-ray diffraction (GIXRD) measurements were carried out to investigate the crystallinity and microstructure of the perovskite thin films. Fig. S1 shows the grazing incidence X-ray diffraction (GIXRD) pattern of the CH₃NH₃PbI₃ film on different polymers. Strong peaks were observed at $2\theta = 14.1^{\circ}$, 28.4° and 31.9° , associated to the (110), (220) and (310) diffractions of CH₃NH₃PbI₃ respectively. The peaks indicated that the organo-lead halide perovskite films possessed high crystallinity. The absence of the diffraction peak at 12.7° showed that the samples were free from the starting material PbI₂, which in other words indicated the reactions were driven to completeness during the formation of perovskite crystals.

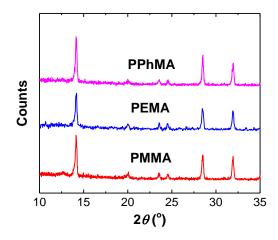


Fig. S1 GIXRD pattern of CH₃NH₃PbI₃ perovskite films grown on different polymer substrate surfaces.

^a Department of Physics and Institute for Advanced Materials, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.

^b Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.

[‡] Authors with equal contribution.

^{*} Corresponding author. Email: skso@hkbu.edu.hk