Supporting information

Applying target data screening followed by characteristic fragment filtering for the comprehensive screening and identification of alkaloids in *Corydalis yanhusuo* W.T. Wang by UPLC-Q-TOF/MS^E

Meiling Wang, Yuehong Liu, Shuang Fu, Qingqing Zhang, Qing Wang, Xiaoyan Gao*

Tetrahydroprotoberberine-type alkaloids

Protopine-type alkaloids

Protoberberine-type alkaloids

Aporphine-type alkaloids

Fig. S1. The chemical structures of the four types of alkaloids in yanhusuo

School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488 China

^{*}Corresponding author: Prof. Xiaoyan Gao, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East of Baiyang Road, Liangxiang Town, Fangshan District, Beijing 102488, P. R. China E-mail address: gaoxiaoyan0913@sina.com

Abbreviations: UPLC Q-TOF/MS, ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry; TCM, traditional Chinese medicine; BPI, Base peak ion chromatogram; ESI, electro spray ionization;

3.1 Optimization of UPLC-MS conditions

The LC conditions and MS conditions were optimized. LC conditions including the mobile phase system (methanol/water, acetonitrile/water, acetonitrile/0.1% formic acid in water), column temperature (30° C, 40° C), flow rate (0.2 mL/min, 0.3 mL/min, 0.4 mL/min) and injection volume (2μ L, 3μ L, 5μ L) were examined in the gradient program. The LC conditions were optimized as described in Section 2.3, and the chromatographic peaks were well separated. MS conditions, including ionization mode, capillary voltage, cone voltage, source temperature, desolvation gas temperature and collision energy were optimized. The results showed that the alkaloids had a higher response in the positive ion mode than the negative ion mode. The major alkaloids in yanhusuo were well detected. Meanwhile, in order to obtain abundant fragmentation ion information, the collision energy of the 10-40 V ramp trap collision was selected.

3.2 Alkaloid fragmentation pattern analysis and characteristic ion determination

3.2.1 Fragmentation patterns and characteristic ions of tetrahydroprotoberberine alkaloids

Tetrahydroprotoberberine-type alkaloids easily underwent RDA cleavage with complementary fragment ions in MS, since the C-ring was saturated¹⁻³. The largest difference occurred between tetrahydroprotoberberine-type alkaloids and other types of alkaloids in the electrospray ionization mass spectrometry. The abundant fragment ions information of the tetrahydroprotoberberine and tetrahydroberberine alkaloids is shown in Fig. S2. According to the fragmentation pathways of tetrahydropalmatine

(Fig. S3) and tetrahydroberberine (Fig. S4), and the related literature, fragments above m/z 280 were predominantly cleaved by substituents and fragment ions below m/z 200 were produced by RDA cleavage. RDA cleavage produced the highest intensity of fragments characteristic nitrogen-containing fragments of the as tetrahydroprotoberberine-type alkaloids, and the characteristic ions were related to the type of substituents at the C2-C3 positions. When the C2-C3 positions possessed two methoxyl, methylenedioxyl, a methoxyl and a hydroxyl, respectively, the characteristic ions were m/z 192.1019, m/z 176.0706 and m/z 178.0869, respectively, which were used to rapidly identify the tetrahydroprotoberberine-type alkaloid compounds.

Fig. S2 The MS spectra in high energy scan of A (tetrahydropalmatine) and B (tetrahydroberberine) in positive ion

Fig. S3 The possible fragmentation pathway of tetrahydropalmatine

Fig. S4 The possible fragmentation pathway of tetrahydroberberine

3.2.2 Fragmentation patterns and characteristic ions of protoberberine alkaloids

The C-ring structure of Protoberberine-type alkaloid was not saturated, so it was difficult for the alkaloid to experience RDA cleavage. The principal cleavage was of

the substituents^{4, 5}. In this study, according to references of palmatine, berberine and dehydrocorydaline and related literature, the possible fragmentation pathways were summarized to obtain characteristic ions. The abundant fragment ion information of palmatine, dehydrocorydaline and berberine are shown in Fig. S5. Summarizing the fragmentation pathway of palmatine (Fig. S6), dehydrocorydaline (Fig. S7) and

berberine (Fig. S8) and related literature, it was easy to determine that the fragment ion information was linked to the substituent cleavage on the A- and D-rings. When the substituents contained two or more methoxy groups, the characteristic fragment ions were $[M - CH_3]^+$, $[M - CH_4]^+$, $[M - CH_4 - CO]^+$, $[M - 2CH_3]^+$ and $[M - CH_3OH]^+$. When the substituent contained a methylenedioxyl group, the characteristic fragment ion exhibited $[M - CO]^+$. These characteristic fragment ions were used to rapidly identify the protoberberine-type alkaloid compounds.

Fig. S5 The MS spectra in high energy scan of A (palmatine), B(dehydrocorydaline) and C (berberine) in positive ion

Fig. S6 The possible fragmentation pathway of palmatine

Fig. S7 The possible fragmentation pathway of dehydrocorydaline

Fig. S8 The possible fragmentation pathway of berberine

3.2.3 Fragmentation patterns and characteristic ions of protopine alkaloids

The skeleton and substituents of protonine-type alkaloids were similar to the tetrahydroprotoberberine-type alkaloids. Therefore, the two types of alkaloids were also similar to the fragmentation pathway, which both easily undergo RDA cleavage to produce complementary fragment ions^{1, 2}. However, there were some differences between protopine-type alkaloids and tetrahydroprotoberberine-type alkaloids in the structure. Specifically, protopine-type alkaloids were linked to oxygen to form a carbonyl group at the C14 position. The abundant fragment ion information of protopine and allocryptopine is shown in Fig. S9. Summarizing the fragmentation pathways of protopine (Fig. S10) and allocryptopine (Fig. S11) and related literature, it was found that the fragment ions with higher relative abundance in mass spectra were produced by the further dehydrated after RDA cleavage, instead of being directly produced by RDA cleavage. According to the fragmentation pathway of the reference substances to obtain the characteristic ions, the characteristic ions were related to the type of substituents at the C2-C3 positions. When the C2-C3 positions possessed two methoxyl, methylenedioxyl, a methoxyl and a hydroxyl, respectively, the characteristic ions were m/z 222.1125, m/z 206.0812 and m/z 208.0968, respectively. Furthermore, corresponding dehydration fragments m/z 204.1019, m/z188.0712 and m/z 190.0868 were also as characteristic ions, respectively, which were used to rapidly identify the compounds of protopine-type alkaloids.

Fig. S9 The MS spectra in high energy scan of A (protopine) and B (allocryptopine) in positive

Fig. S10 The possible fragmentation pathway of protopine

Fig. S11 The possible fragmentation pathway of allocryptopine

3.2.4 Fragmentation patterns and characteristic ions of aporphine alkaloids

There were considerable differences in the structural framework and fragmentation pathway between the aporphine-type alkaloids and the other alkaloids. Owing to the lack of the corresponding reference substance, the cleavage path was summed up by the related literature to determine the characteristic fragment ions. A weak bond existed in the amide group, so aporphine-type alkaloids very easily lost $(CH_3)_2NH$ or CH_3NH_2 substituents to produce the most abundant fragment of $[M - 45]^+$ or $[M - 31]^+$ as the characteristic fragment ions, which was used to characterize the aporphine-type alkaloids. Peak 49 displayed a molecular ion at m/z 356.1861 $[M + H]^+$ with a molecular formula of $C_{21}H_{25}NO_4$. The abundant fragment ion information of peak 49 is shown in Fig. S12. Peak 49 produced the higher intensity ion at m/z 325.1439[M +H - $CH_3NH_2]^+$, as well as other fragment ions at m/z 294.1255 $[M + H - CH_3NH_2 OCH_3]^+$, m/z 279.1019 $[M + H - CH_3NH_2 - OCH_3 - CH_3]^+$, m/z 251.1 $[M + H - CH_3NH_2$ - $CH_3OH - CH_3 - CO]^+$, m/z 310.1205 $[M + H - CH_3NH_2 - CH_3]^+$ and so on. Based on its retention times and fragment ions and compared with the reference literature, peak 49 was tentatively identified as glaucine or its isomer. The possible glaucine fragmentation pathway is shown in Fig. S13.

Fig. S12 The MS spectra in high energy scan of peak 49 in positive ion

Fig. S13 The possible fragmentation pathway of glaucine

3.4.5 Other compounds

In addition to the above four types of alkaloids, 22 other alkaloids were tentatively identified based on the accurate mass and MS/MSE data, previous reports^{1, 2, 6, 7} and online databases. The mass error of the quasi-molecular ions of these 22 compounds was lower than 10 ppm. Detailed identification of the other alkaloids was given in Table S5.

Table S1 The data screening table of tetrahydroprotoberberine alkaloids

[M+H]+	C-2	C-3	C-9	C-10	C-13
356.1862	OCH ₃	OCH ₃	OCH ₃	OCH ₃	Η
370.2018	OCH ₃	OCH ₃	OCH ₃	OCH ₃	CH ₃
340.1543	OCH ₃	OCH ₃	-OC	H ₂ O-	Η

354.1705	OCH ₃	OCH ₃	-OC	H ₂ O-	CH ₃
342.1705	OCH ₃	OCH ₃	OCH ₃	ОН	Н
356.1862	OCH ₃	OCH ₃	OCH ₃	ОН	CH ₃
342.1705	OCH ₃	OCH ₃	ОН	OCH ₃	Н
356.1862	OCH ₃	OCH ₃	ОН	OCH ₃	CH ₃
328.1543	OCH ₃	OCH ₃	ОН	ОН	Н
342.1705	OCH ₃	OCH ₃	ОН	ОН	CH ₃
342.1705	OCH ₃	ОН	OCH ₃	OCH ₃	Н
356.1862	OCH ₃	ОН	OCH ₃	OCH ₃	CH ₃
342.1705	ОН	OCH ₃	OCH ₃	OCH ₃	Н
356.1862	ОН	OCH ₃	OCH ₃	OCH ₃	CH ₃
326.1392	OCH ₃	ОН	-OC	H ₂ O-	Н
340.1543	OCH ₃	OH	-OC	H ₂ O-	CH ₃
326.1392	ОН	OCH ₃	-OC	H ₂ O-	Н
340.1543	OH	OCH ₃	-OC	H ₂ O-	CH ₃
328.1549	OCH ₃	ОН	ОН	OCH ₃	Н
342.1705	OCH ₃	ОН	ОН	OCH ₃	CH ₃
328.1549	OCH ₃	ОН	OCH ₃	ОН	Н
342.1705	OCH ₃	ОН	OCH ₃	OH	CH ₃
328.1549	ОН	OCH ₃	ОН	OCH ₃	Н
342.1705	ОН	OCH ₃	ОН	OCH ₃	CH ₃
328.1549	ОН	OCH ₃	OCH ₃	ОН	Н
342.1705	ОН	OCH ₃	OCH ₃	OH	CH ₃
314.1392	OCH ₃	OH	OH	OH	Н
328.1549	OCH ₃	ОН	ОН	ОН	CH ₃
314.1392	OH	OCH ₃	OH	OH	Н
328.1549	ОН	OCH ₃	ОН	ОН	CH ₃
340.1543	-OC	H ₂ O-	OCH ₃	OCH ₃	Н
354.17	-OC	H ₂ O-	OCH ₃	OCH ₃	CH_3
324.123	-OC	H ₂ O-	-OC	H ₂ O-	Н
338.1387	-OC	H ₂ O-	-OC	H ₂ O-	CH ₃
326.1387	-OC	H ₂ O-	OCH ₃	OH	Н
340.1543	-OC	H ₂ O-	OCH ₃	ОН	CH ₃
326.1387	-OC	H ₂ O-	ОН	OCH ₃	Н
340.1543	-OC	H ₂ O-	ОН	OCH ₃	CH ₃
312.1236	-OC	H ₂ O-	OH	OH	Н
326.1392	-OC	H ₂ O-	ОН	ОН	CH ₃

_

Table S2 The data screening table of protonine alkaloids

[M+H]+	C-2	C-3	C-9	C-10	C-13
386.1967	OCH ₃	OCH ₃	OCH ₃	OCH ₃	Н
400.2124	OCH ₃	OCH ₃	OCH ₃	OCH ₃	CH_3
370.1654	OCH ₃	OCH ₃	-OC	H ₂ O-	Н

384.1811	OCH ₃	OCH ₃	-OC	H ₂ O-	CH ₃
372.1811	OCH ₃	OCH ₃	OCH ₃	OH	Н
386.1967	OCH ₃	OCH ₃	OCH ₃	OH	CH_3
372.1811	OCH ₃	OCH ₃	OH	OCH ₃	Н
386.1967	OCH ₃	OCH ₃	OH	OCH ₃	CH ₃
358.1694	OCH ₃	OCH ₃	OH	OH	Н
372.1811	OCH ₃	OCH ₃	OH	OH	CH ₃
372.1811	OCH ₃	OH	OCH ₃	OCH ₃	Н
386.1967	OCH ₃	OH	OCH ₃	OCH ₃	CH ₃
372.1811	ОН	OCH ₃	OCH ₃	OCH ₃	Н
386.1967	OH	OCH ₃	OCH ₃	OCH ₃	CH_3
356.1498	OCH ₃	OH	-OC	H ₂ O-	Н
370.1654	OCH ₃	ОН	- O C	H ₂ O-	CH ₃
356.1498	OH	OCH ₃	-OC	H ₂ O-	Н
370.1654	ОН	OCH ₃	- O C	H ₂ O-	CH ₃
358.1654	OCH ₃	OH	OH	OCH ₃	Н
372.1811	OCH ₃	ОН	ОН	OCH ₃	CH ₃
358.1654	OCH ₃	OH	OCH ₃	OH	Н
372.1811	OCH ₃	ОН	OCH ₃	ОН	CH ₃
358.1654	OH	OCH ₃	OH	OCH ₃	Н
372.1811	ОН	OCH ₃	ОН	OCH ₃	CH ₃
358.1654	OH	OCH ₃	OCH ₃	OH	Н
372.1811	ОН	OCH ₃	OCH ₃	ОН	CH ₃
344.1498	OCH ₃	OH	OH	OH	Н
358.1654	OCH ₃	OH	OH	OH	CH_3
344.1498	OH	OCH ₃	OH	OH	Н
358.1654	OH	OCH_3	OH	OH	CH_3
370.1654	-OC	H ₂ O-	OCH ₃	OCH ₃	Н
384.1811	-OC	H ₂ O-	OCH ₃	OCH ₃	CH ₃
354.1341	-OC	H ₂ O-	-OC]	H ₂ O-	Н
368.1498	-OC	H ₂ O-	-OC	H ₂ O-	CH_3
356.1498	-OC	H ₂ O-	OCH ₃	OH	Н
370.1654	-OC	H ₂ O-	OCH ₃	OH	CH_3
356.1498	-OC	H ₂ O-	OH	OCH ₃	Н
370.1654	-OC	H ₂ O-	OH	OCH ₃	CH_3
342.1341	-OC	H ₂ O-	OH	OH	Н
356.1498	-OC	H ₂ O-	OH	OH	CH_3

_

Table S3 The data screening table of protoberberine alkaloids

m/z	n(OCH ₃)	n(OH)	n(-OCH ₂ O-)	C-13
320.0917	0	0	2	Η
334.1074	0	0	2	CH ₃
308.0917	0	2	1	Н

322.1074	0	2	1	CH ₃
296.0917	0	4	0	Н
310.1074	0	4	0	CH_3
310.1074	1	3	0	Н
324.1230	1	3	0	CH ₃
322.1074	1	1	1	Н
336.1230	1	1	1	CH ₃
324.1230	2	2	0	Н
338.1387	2	2	0	CH ₃
336.1230	2	0	1	Н
350.1387	2	0	1	CH ₃
338.1387	3	1	0	Н
352.1543	3	1	0	CH ₃
352.1543	4	0	0	Н
366.1705	4	0	0	CH ₃

Table S4 The data screening table of aporphine alkaloids

m/z	n(OCH ₃)	n(OH)	n(-CH ₂ O-)	N-(CH ₃)n	n(-2H)
310.1074	0	0	2	0	0
308.0923	0	0	2	0	1
324.1236	0	0	2	1	0
322.1079	0	0	2	1	1
338.1387	0	0	2	2	0
336.1230	0	0	2	2	1
298.1079	0	2	1	0	0
296.0923	0	2	1	0	1
312.1236	0	2	1	1	0
310.1079	0	2	1	1	1
326.1387	0	2	1	2	0
324.1230	0	2	1	2	1
286.1079	0	4	0	0	0
284.0923	0	4	0	0	1
300.1236	0	4	0	1	0
298.1079	0	4	0	1	1
314.1387	0	4	0	2	0
312.1230	0	4	0	2	1
300.1236	1	3	0	0	0
298.1079	1	3	0	0	1
314.1392	1	3	0	1	0
312.1236	1	3	0	1	1
328.1543	1	3	0	2	0
326.1387	1	3	0	2	1
312.1230	1	1	1	0	0

310.1079	1	1	1	0	1	
326.1230	1	1	1	1	0	
324.1236	1	1	1	1	1	
340.1543	1	1	1	2	0	
338.1387	1	1	1	2	1	
314.1392	2	2	0	0	0	
312.1236	2	2	0	0	1	
328.1549	2	2	0	1	0	
326.1392	2	2	0	1	1	
342.1700	2	2	0	2	0	
340.1543	2	2	0	2	1	
326.1392	2	0	1	0	0	
324.1236	2	0	1	0	1	
340.1549	2	0	1	1	0	
338.1392	2	0	1	1	1	
354.1700	2	0	1	2	0	
352.1543	2	0	1	2	1	
328.1549	3	1	0	0	0	
326.1392	3	1	0	0	1	
342.1700	3	1	0	1	0	
340.1549	3	1	0	1	1	
356.1856	3	1	0	2	0	
354.1700	3	1	0	2	1	
342.1705	4	0	0	0	0	
340.1549	4	0	0	0	1	
356.1862	4	0	0	1	0	
354.1705	4	0	0	1	1	
370.2073	4	0	0	2	0	
368.1856	4	0	0	2	1	

Red numbers indicate quasi-molecular ions matched with yanhusuo compounds

References

- 1. M. Sun, J. Liu, C. Lin, M. Lan and L. Li, Acta Pharmaceutica Sinica B, 2014, 4, 208-216.
- 2. E. K. Jeong, S. Y. Lee, S. M. Yu, N. H. Park, H. S. Lee, Y. H. Yim, G. S. Hwang, C. Cheong,

J. H. Jung and J. Hong, Rapid Communications in Mass Spectrometry, 2012, 26, 1661.

3. B. Ding, T. Zhou, G, Z. Hong and Y. Wu, Journal of Pharmaceutical & Biomedical Analysis,

2007, 45, 219-226.

- 4. W. Wu, F. Song, C. Yan, Z. Liu and S. Liu, Journal of Pharmaceutical & Biomedical Analysis, 2005, 37, 437-446.
- 5. D. Wang, Z. Liu, M. Guo and S. Liu, Journal of Mass Spectrometry, 2004, 39, 1356–1365.
- 6. X. Yang, X. Yang and J. Liu, China Journal of Chinese Materia Medica, 2014, 39, 20-27.
- L. Yuan, J. Yin, M. Tian, J. Xie, Y. Wang, Z. Hou, Y. Li and Y. Zhang, Analytical Methods, 2016, 8, 2274-2281.

NO.	RT	Formula	Measured mass	Mass	Response	Adducts	MS/MS ^E	Identification
	(min)		(m/z)	Error				
				(ppm)				
1	3.6	$C_{19}H_{21}NO_4 \\$	328.1548	1.46	9208	+H	328.1545[M + H] ⁺ ,	(+)-isoboldine or boldine
							297.1134[M + H - CH ₃ NH ₂] ⁺ ,	
							$265.0863[M + H - CH_3NH_2 - CH_3OH]^+$,	
							222.0686[M+H - CH ₃ NH ₂ - CH ₃ OH - CH ₃ - CO] ⁺ ,	
							$282.0880[M + H - CH_3NH_2 - CH_3]^+$	
2 ^a	3.88	$C_{19}H_{24}NO_3$	314.1752	0.42	12250	-е	314.1753 [M] ⁺ ,	magnocurarine
							269.1172 [M - (CH ₃) ₂ NH] ⁺ ,	
							147.0448 [M - C ₁₀ H ₁₈ NO] ⁺	
3	4.5	$C_{19}H_{21}NO_4$	328.1544	0.27	4265	+H	328.1538[M + H] ⁺ ,	demethylcorydalmine
							192.1024 [M + H - C ₈ H ₈ O ₂] ⁺ ,	
							$177.0544[M + H - C_8H_8O_2 - CH_3]^+,$	
							313.1305[M + H - CH ₃] ^{+,}	
							312.1244[M + H - CH ₄] ⁺ ,	
							296.1286[M + H - CH ₃ OH] ⁺ ,	
4 ^b	4.81	$C_{18}H_{17}NO_4$	312.1236	1.66	3354	+H	312.1234[M + H] ⁺ ,	unknow
							294.0766[M + H - CH ₃ - 2H] ⁺ ,	
							$279.0516[M + H - 2CH_3]^+$	

Table S5 86 alkaloid compounds identified from Yanhusuo by UPLC-Q-TOF/MS^E

5	4.9	C ₁₉ H ₂₁ NO ₄	328.1547	1.19	10473	+H	328.1554[M + H] ⁺ ,	(+)-isoboldine or boldine
							297.1126[M + H - CH ₃ NH ₂] ⁺ ,	
							265.0863[M + H - CH ₃ NH ₂ - CH ₃ OH] ⁺ ,	
							222.0674[M + H - CH ₃ NH ₂ - CH ₃ OH - CH ₃ - CO] ⁺ ,	
							$282.0890[M + H - CH_3NH_2 - CH_3]^+$	
6	5.07	$C_{19}H_{21}NO_4$	328.1548	1.51	6892	+H	328.1546[M + H]+,	(S)-scoulerine
							$178.0869[M + H - C_9H_{10}O_2]^+$,	
							$176.0706[M + H - C_9H_{10}O_2 - 2H]^+,$	
							298.1459[M + H - 2CH ₃] ⁺ ,	
							313.1305[M + H - CH ₃] ⁺ ,	
							312.1226[M + H - CH ₄] ⁺ ,	
							296.1286[M + H - CH ₃ OH] ⁺ ,	
							$163.0631[M + H - C_9H_{10}O_2 - CH_3]^+,$	
							280.09770[M + H - CH ₃ - 2H - OCH ₃] ⁺ ,	
7	5.98	$C_{20}H_{23}NO_4$	342.1694	0.97	7158	+H	342.1694[M + H] ⁺ ,	corydalmine
							$192.1020[M + H - C_9H_{10}O_2]^+,$	
							$177.0789[M + H - C_9H_{10}O_2 - CH_3]^+$,	
							$151.0760[M + H - C_{11}H_{13}NO_2]^+$	
8	6.33	$C_{19}H_{19}NO_4$	326.1387	0.15	8565	+H	326.1383[M + H] ⁺ ,	bulbocapnine
							295.0923[M + H - CH ₃ NH ₂] ⁺ ,	
							$263.0704[M + H - CH_3NH_2 - CH_3OH]^+$,	
							$280.07490[M + H - CH_3NH_2 - CH_3]^+$	
9 ^a	6.4	$C_{19}H_{24}NO_3$	314.1753	0.64	225179	-е	314.1753 [M]+,	magnocurarine
							269.1172[M - C ₂ H ₇ N] ⁺ ,	
							$192.1016[M - C_8H_{10}O]^+,$	

10	6.75	$C_{19}H_{21}NO_4 \\$	328.1547	1.2	147286	+H	328.1547[M + H]+,	(S)-scoulerine
							$178.0870[M + H - C_9H_{10}O_2]^+,$	
							$163.0634[M + H - C_9H_{10}O_2 - CH_3]^+,$	
							$151.0761[M + H - C_{10}H_{11}NO_2]^+,$	
							$176.0711[M + H - C_9H_{10}O_2 - 2H]^+,$	
							313.1305[M + H - CH ₃] ⁺ ,	
							312.1244[M + H - CH ₄] ⁺ ,	
							296.1286[M + H - CH ₃ OH] ⁺ ,	
							298.10713[M + H - 2CH ₃] ⁺ ,	
							280.09770[M + H - CH ₃ - 2H - OCH ₃] ⁺ ,	
							148.0761[M + H - C ₉ H ₁₀ O ₂ - CH ₃ OH] ⁺ ,	
							$119.0500[M + H - C_{10}H_{11}NO_2 - CH_3OH]^+$	
11	6.97	$C_{20}H_{23}NO_4$	342.1703	0.95	31719	+H	342.1705[M + H]+,	tetrahydrojatrorrhizine or
							$178.0865[M + H - C_{10}H_{12}O_2]^+,$	tetrahydrocolumbamine
							$163.0632[M + H - C_{10}H_{12}O_2 - CH_3]^+,$	
							$165.0918[M + H - C_{10}H_{11}NO_2]^+,$	
							$176.0700[M + H - C_{10}H_{12}O_2 - 2H]^+,$	
							326.1393[M - CH ₄] ⁺ ,	
							294.1131[M - CH ₃ - 2H - OCH ₃] ⁺ ,	
							312.1242[M + H - 2CH ₃] ⁺	
2	7.08	C ₁₉ H ₁₃ NO ₅	336.0869	0.84	5577	+H	336.0865[M + H] ⁺ ,	8-oxocoptisine
							308.0927[M + H - CO] ⁺ ,	
							306.0777[M + H – CO - 2H] ⁺ ,	
							278.0827[M + H - 2CO - 2H] ⁺ ,	

13 ^b	7.3	C ₂₁ H ₂₅ NO ₅	372.1806	0.23	3191	+H	372.1808[M + H]+,	protopine-type alkaloid
							354.1696[M + H - H ₂ 0] ⁺ ,	
							340.1541[M + H - CH ₃ OH] ⁺ ,	
							$208.0966[M + H - C_{10}H_{12}O_2]^+,$	
							190.0864[M + H - $C_{10}H_{12}O_2 - H_2O]^+$,	
							$165.0919[M + H - C_{11}H_{14}NO_3]^+,$	
14	7.53	C19H19NO4	326.1391	1.14	23219	+H	326.139[M + H] ⁺ ,	(S)-cheilanthifoline or
							178.0867[M + H - C ₉ H ₈ O ₂] ⁺ ,	isochelianthifoline
							$163.0631[M + H - C_9H_8O_2 - CH_3]^+$,	
							$149.0603[M + H - C_{10}H_{12}NO_2]^+$	
							$176.0709[M + H - C_9H_8O_2 - 2H]^+,$	
15	7.86	C ₂₀ H ₂₃ NO ₄	342.1703	0.97	78963	+H	342.1702[M + H] ⁺ ,	corydalmine
							$192.1021[M + H - C_9H_{10}O_2]^+,$	
							177.0784[M + H - C ₉ H ₁₀ O ₂ - CH ₃] ⁺ ,	
							$151.0760[M + H - C_{11}H_{13}NO_2]^+,$	
							$149.0592[M + H - C_{11}H_{13}NO_2 - 2H]^+,$	
							$190.0845[M + H - C_9H_{10}O_2 - 2H]^+$	
16	7.87	C ₁₀ H ₉ NO ₃	192.0656	0.4	8185	+H	192.0656[M + H] ⁺ ,	noroxyhydrastinine
							148.0762[M + H - COO] ⁺ ,	
							176.0668[M + H - O] ⁺	
17	8.04	$C_{20}H_{23}NO_4$	342.17	0.01	35111	+H	342.1705[M + H] ⁺ ,	corydalmine
							$192.1027[M + H - C_9H_{10}O_2]^+,$	
							$151.0746[M + H - C_{11}H_{13}NO_2]^+,$	
							326.1383[M + H - CH ₄] ⁺ ,	
							310.1441[M + H - CH ₃ OH] ⁺ ,	
							328.1533[M + H - CH ₂] ⁺ ,	

$190.1851[M + H - C_9H_{10}O_2 - 2H]^+$

18 ^b	8.56	C ₂₁ H ₂₅ NO ₅	372.1806	0.25	27131	+H	372.1807[M + H] ⁺ ,	protopine-type alkaloid
							$354.1696[M + H - H_2O]^+,$	
							208.0973 [M + H - $C_{10}H_{12}O_2$] ⁺ ,	
							$190.0866[M + H - C_{10}H_{12}O_2 - H_2O]^+,$	
							$165.0919[M + H - C_{11}H_{14}NO_3]^+,$	
19	8.85	$C_{19}H_{16}NO_4^+$	322.1079	1.57	30389	-е	322.1077[M] ⁺ ,	berberrubine or
							307.0842[M - CH ₃] ⁺ ,	dehydrocheilanthifoline
							306.0769[M - CH ₄] ⁺ ,	
							279.0897[M - CH ₃ - CO] ⁺ ,	
							278.0813[M - CH ₄ - CO] ⁺ ,	
20	8.9	$C_{19}H_{18}NO_4^+$	324.1227	-1.01	5356	-е	324.1222[M] ⁺ ,	demethyleneberberine or
							322.1078[M - 2H] ⁺ ,	stepharanine
							309.1005[M - CH ₃] ⁺ ,	
							294.0768[M - 2CH ₃] ⁺ ,	
							292.0980[M - CH ₃ OH] ⁺ ,	
							308.0918[M - CH ₄] ⁺ ,	
							280.0974[M - CH ₄ - CO] ⁺ ,	

21	9.08	C ₂₀ H ₂₃ NO ₄	342.1704	1.35	1052483	+H	342.1704[M + H] ⁺ ,	(R)-(+)-corypalmine or
							$178.0870[M + H - C_{10}H_{12}O_2]^+,$	tetrahydrocolumbamine
							$163.0635[M + H - C_{10}H_{12}O_2 - CH_3]^+,$	
							326.1393[M - CH ₄] ⁺ ,	
							$176.0712[M + H - C_{10}H_{10}O_2]^+$	
							312.1234[M + H - 2CH ₃] ⁺	
22	9.26 ^b	C ₂₁ H ₂₅ NO ₄	356.1862	1.6	533293	+H	356.1863[M + H] ⁺ ,	tetrahydropalmatine isomer
							$192.1026[M + H - C_{10}H_{12}O_2]^+,$	or yuanhunine
							$177.0790[M + H - C_{10}H_{12}O_2 - CH_3]^+,$	
							340.1548[M + H - CH ₄] ⁺ ,	
							341.1622[M + H - CH ₃] ⁺ ,	
							308.1285[M + H - CH ₃ - 2H - OCH ₃] ⁺ ,	
							$190.0859[M + H - C_{10}H_{12}O_2 - 2H]^+,$	
							324.1628[M + H - CH ₃ OH] ⁺ ,	
							326.1392[M + H - 2CH ₃] ⁺ ,	
							$165.0919[M + H - C_{11}H_{13}NO_2]^+,$	
							$150.0667[M + H - C_{11}H_{13}NO_2 - CH_3]^+,$	
							$135.0447[M + H - C_{11}H_{13}NO_2 - 2CH_3]^+$	
23	9.66	$C_{19}H_{18}NO_4{}^+$	324.1222	1.31	3885	-е	324.1228[M] ⁺ ,	demethyleneberberine or
							292.0980[M - CH ₃ OH] ⁺ ,	stepharanine
							308.0916[M - CH ₄] ⁺ ,	
							280.0975[M - CH ₄ - CO] ⁺ ,	
24	9.85	$C_{19}H_{18}NO_4^+$	324.1236	1.81	20559	-е	324.1237[M] ⁺ ,	demethyleneberberine
							309.1004[M - CH ₃] ⁺ ,	
							294.0769[M - 2CH ₃] ⁺ ,	
							292.0977[M - CH ₃ OH] ⁺ ,	

25	9.85	C ₂₀ H ₂₃ NO ₄	342.1703	1.01	120853	+H	342.1703[M + H]+,	demethyleneberberine or
							$178.0867[M + H - C_{10}H_{12}O_2]^+,$	stepharanine
							$163.0635[M + H - C_{10}H_{12}O_2 - CH_3]^+,$	
							$176.0707[M + H - C_{10}H_{12}O_2 - 2H]^+,$	
							326.1393[M - CH ₄] ⁺ ,	
							312.1242[M + H - 2CH ₃] ⁺	
26	9.91 ^b	$C_{21}H_{25}NO_4$	356.1857	0.15	169456	+H	356.1858[M + H] ⁺ ,	tetrahydropalmatine isomer
							$192.1023[M + H - C_{10}H_{12}O_2]^+,$	
							$165.0914[M + H - C_{11}H_{13}NO_2]^+,$	
							326.1390[M + H - 2CH ₃] ⁺ ,	
							341.1623[M + H - CH ₃] ⁺ ,	
							308.1358[M + H - CH ₃ - 2H - OCH ₃] ⁺ ,	
							324.1629[M + H - CH ₃ OH] ⁺ ,	
							$190.0863[M + H - C_{10}H_{12}O_2 - 2H]^+,$	
							$150.0682[M + H - C_{11}H_{13}NO_2 - CH_3]^+,$	
							$135.04475[M + H - C_{11}H_{13}NO_2 - 2CH_3]^+$	
27	10.08 ^b	C ₂₁ H ₂₅ NO ₄	356.1858	0.51	367569	+H	356.1859[M + H] ⁺ ,	tetrahydropalmatine isomer
							$192.1029[M + H - C_{10}H_{12}O_2]^+,$	
							$177.0794[M + H - C_{10}H_{12}O_2 - CH_3]^+,$	
							340.1549[M + H - CH ₄] ⁺ ,	
							308.1281[M + H - CH ₃ - 2H - OCH ₃] ⁺ ,	
							$326.1390[M + H - 2CH_3]^+,$	
							$190.0858[M + H - C_{10}H_{12}O_2 - 2H]^+,$	
							$162.0554[M + H - C_{10}H_{12}O_2 - 2CH_3]^+$	

28*	10.42	C ₂₀ H ₁₉ NO ₅	354.1341	1.51	819976	+H	354.1341[M + H] ⁺ ,	protopine
							188.0713[M + H - C ₉ H ₈ O ₂ - H ₂ O] ⁺ ,	
							$149.0605[M + H - C_{11}H_{11}NO_3]^+,$	
							206.0813[M + H - C ₉ H ₈ O ₂] ⁺ ,	
							$189.0772[M + H - C_9H_8O_2 - OH]^+,$	
							336.1235[M + H - H ₂ O] ⁺ ,	
29	10.84	$C_{21}H_{21}NO_5$	368.1493	0.16	10827	+H	368.149[M + H] ⁺ ,	corycavine
							352.1185[M + H - CH ₄] ⁺ ,	
							338.1009[M + H - 2H - CO] ⁺ ,	
							336.1238[M + H - 2H – CO - 2H] ⁺ ,	
30	11.01	$C_{20}H_{20}NO_4^+$	338.1391	1.21	16873	-е	338.1389[M] ⁺ ,	jatrorrhizine or
							323.1153[M - CH ₃] ⁺ ,	columbamine
							294.1134[M - CH ₄ - CO] ⁺ ,	
							291.08958[M - CH ₃ - CH ₃ OH] ⁺ ,	
							306.11318[M - CH ₃ OH] ⁺ ,	
							308.0921[M - 2CH ₃] ⁺	
31	11.02	$C_{21}H_{23}NO_4$	354.1695	-1.44	10871	+H	354.1693[M + H] ⁺ ,	dehydroglaucine isomer
							338.1390[M + H - CH ₄] ⁺ ,	
							323.1153[M + H - CH ₃ NH ₂] ⁺ ,	
							265.0863[M + H - CH ₃ NH ₂ - CH ₃ OH] ⁺ ,	
							280.0967[M + H - CH ₃ NH ₂ - CH ₃ OH - CH ₃ - CO] ⁺ ,	
							$308.0921[M + H - CH_3NH_2 - CH_3]^+$	
32 ^a	11.23	$C_{20}H_{21}NO_4$	340.1546	0.81	22174	+H	340.1548[M + H]+,	tetrahydroprotoberberine-
							$192.1023[M + H - C_9H_8O_2]^+,$	type alkaloid
							324.1209[M + H - CH ₄] ⁺	

33	11.41	$C_{19}H_{14}NO_4{}^+$	320.0921	1.12	80618	-е	320.0921[M] ⁺ ,	coptisine or pseudocoptisine
							318.0772[M - 2H] ⁺	
							292.0971[M - CO] ⁺ ,	
							290.0815[M - CO - 2H] ⁺	
							264.1018[M – CO - CO] ⁺ ,	
							262.0807[M - CO - CO - 2H] ⁺ ,	
							277.0743[M- CO - CH ₃] ⁺	
34	11.56	$C_{20}H_{20}NO_4^+$	338.1381	-1.66	17973	-е	338.1382[M] ⁺ ,	jatrorrhizine or
							323.1132[M - CH ₃] ⁺ ,	columbamine
							294.1134[M - CH ₄ - CO] ⁺ ,	
							291.0896[M - CH ₃ - CH ₃ OH] ⁺ ,	
							306.1132[M - CH ₃ OH] ⁺ ,	
							308.0926[M - 2CH ₃] ⁺	
35	11.65	C ₂₁ H ₂₅ NO ₄	356.186	1.04	397941	+H	356.1859[M + H] ⁺ ,	corybulbine or
							$178.0870[M + H - C_{11}H_{14}O_2]^+,$	Isocorybulbine
							$163.0642[M + H - C_{11}H_{14}O_2 - CH_3]^+,$	
							340.1543[M + H - CH ₄] ⁺ ,	
							326.1390[M + H - 2CH ₃] ⁺ ,	
							308.1297[M + H - CH ₃ OH - CH ₃] ⁺	
36 ^a	11.78	C ₁₉ H ₁₉ NO ₄	326.1391	1.25	4317	+H	326.139[M + H] ⁺ ,	nandinine
							$176.0715[M + H - C_9H_{10}O_2]^+$	
37	12.05	$C_{19}H_{14}NO_4^+$	320.0925	2.28	1437278	-е	320.0925[M]+,	coptisine or pseudocoptisine
							318.0772[M - 2H] ⁺	
							292.0976[M - CO] ⁺ ,	
							290.0818[M - CO - 2H] ⁺	
							264.1018[M – CO - CO] ⁺ ,	

 $262.0867[M - CO - CO - 2H]^+,$ $277.0743[M - CO - CH_3]^+$

38*	12.08	$\mathrm{C}_{21}\mathrm{H}_{23}\mathrm{NO}_5$	370.1655	1.54	447391	+H	370.1654[M + H] ⁺ ,	allocryptopine
							$188.072[M + H - C_{10}H_{12}O_2 - H_2O]^+,$	
							$206.08232[M + H - C_{10}H_{12}O_2]^+$,	
							$165.0911[M + H - C_{11}H_{11}NO_3]^+,$	
							352.15492[M + H - H ₂ O] ⁺ ,	tetrahydrocoptisine jatrorrhizine or columbamine
							354.13161[M + H - CH ₄] ⁺ ,	
							340.12416[M + H - 2CH ₃] ⁺	
39	12.24	C ₁₉ H ₁₇ NO ₄	324.1237	1.95	463292	+H	324.1236[M + H] ⁺ ,	tetrahydrocoptisine
							176.0714[M + H - C ₉ H ₈ O ₂] ⁺ ,	
							$149.0607[M + H - C_{10}H_9NO_2]^+,$	
							310.1086[M + H - CH ₂] ⁺ ,	
							$174.0556[M + H - C_9H_8O_2 - 2H]^+,$	
							161.0486[M+H - C ₉ H ₈ O ₂ - CH ₃] ⁺	
40	12.48	$C_{20}H_{20}NO_4^+$	338.139	0.85	845403	+H	338.1394[M] ⁺ ,	jatrorrhizine or
							336.1236[M - 2H] ⁺ ,	columbamine
							323.1161[M - CH ₃] ⁺ ,	
							322.1079[M - CH ₄] ⁺ ,	
							$307.0852[M - C_2H_7]^+,$	
							294.1131[M - CH ₄ - CO] ⁺ ,	
							291.08958[M - CH ₃ - CH ₃ OH] ⁺ ,	
							306.1128[M - CH ₃ OH] ⁺ ,	

308.0918[M - 2CH₃]⁺

41	12.6	$C_{19}H_{14}NO_4^+$	320.092	0.73	16351	-е	320.0925[M] ⁺ ,	coptisine or pseudocoptisine
							292.0976[M - CO] ⁺ ,	
							290.0818[M - CO - 2H] ⁺	
							264.1018[M - 2CO] ⁺ ,	
							262.0867[M - 2CO - 2H]+,	
42*	12.73	C ₂₁ H ₂₅ NO ₄	356.1859	0.73	1644391	+H	356.1859[M + H] ⁺ ,	tetrahydropalmatine
							192.1023[M + H - $C_{10}H_{12}O_2$] ⁺ ,	
							$165.0912[M + H - C_{11}H_{13}NO_2]^+,$	
							340.1549[M + H - CH ₄] ⁺ ,	
							341.16288[M + H - CH ₃] ⁺ ,	
							339.15806[M + H - CH ₃ - 2H] ⁺ ,	
							$150.0680[M + H - C_{11}H_{13}NO_2 - CH_3]^+,$	
							308.1358[M + H - CH ₃ - 2H - OCH ₃] ⁺ ,	
							$190.0856[M + H - C_{10}H_{12}O_2 - 2H]^+,$	
							324.1629[M + H - CH ₃ OH] ⁺ ,	
							326.1364[M + H - 2CH ₃] ⁺ ,	
							298.1440[M + H - 2CH ₃ - CO] ⁺ ,	
							$135.0447[M + H - C_{11}H_{13}NO_2 - 2CH_3]^+,$	
							$177.0791[M + H - C_{10}H_{12}O_2 - CH_3]^+,$	

$$\begin{split} &162.0552[M + H - C_{10}H_{12}O_2 - 2CH_3]^+, \\ &134.0728[M + H - C_{10}H_{12}O_2 - CH_3 - 2CO]^+, \\ &159.0685[M + H - C_{10}H_{12}O_2 - CH_3OH]^+ \end{split}$$

43	12.75	$C_{22}H_{23}NO_5$	382.165	0.25	19124	+H	382.165[M + H] ⁺ ,	7-aldehyde dehydroglaucine
							366.1338[M + H - CH ₄] ⁺ ,	
							354.1702[M + H - CO] ⁺	
							350.1386[M + H - CH ₃ OH] ⁺ ,	
							$340.1549[M + H - CO - CH_2]^+$	
							$324.1239[M + H - CO - 2CH_3]^+$	
							308.1358[M + H - CO - CH ₃ - CH ₃ O] ⁺	
44	12.83	C ₂₀ H ₂₅ NO ₃	328.191	0.72	347521	+H	328.1910[M + H]+,	leonticine
							$283.1327[M + H - C_2H_6N]^+$,	
							$251.1055[M + H - C_3H_{10}NO]^+,$	

45	12.93	$C_{20}H_{20}NO_4^+$	338.139	1.02	84316	-е	338.1392[M] ⁺ ,	jatrorrhizine or
							322.1081[M - CH ₄] ⁺ ,	columbamine
							294.1134[M - CH ₄ - CO] ⁺ ,	
							291.0896[M - CH ₃ - CH ₃ OH] ⁺ ,	
							306.1123[M - CH ₃ OH] ⁺ ,	
							308.0926[M - 2CH ₃] ⁺	
46	12.93	$C_{20}H_{25}NO_{3}$	328.1915	2.29	398967	+H	328.1915[M + H] ⁺ ,	leonticine
							298.14467[M + H - 2CH ₃] ⁺ ,	
							296.16725[M + H - CH ₃ OH] ⁺ ,	
							$121.0651[M + H - C_{12}H_{16}NO_2]^+,$	
							$175.0750[M + H - C_9H_{14}NO]^+,$	
47	12.97	$C_{22}H_{28}NO_4^+$	370.2016	0.89	179649	-е	370.2015[M] ⁺ ,	
							$206.1183[M - C_{10}H_{12}O_2]^+,$	N-
							$190.0864[M - C_{10}H_{12}O_2 - CH_3 - 2H]^+,$	methyltetrahydropalmatine
							$191.0934[M - C_{10}H_{12}O_2 - CH_3]^+,$	
							354.1687[M - CH ₄] ⁺ ,	
							340.1488[M - 2CH ₃] ⁺	
48	13.08	$\mathrm{C}_{21}\mathrm{H}_{25}\mathrm{NO}_4$	356.1862	1.46	1281448	+H	356.1861[M + H] ⁺ ,	Glaucine
							325.1439[M + H - CH ₃ NH ₂] ⁺ ,	
							294.1255[M + H - CH ₃ NH ₂ - CH ₃ O] ⁺ ,	
							279.1019[M + H - CH ₃ NH ₂ - CH ₃ O - CH ₃] ⁺ ,	
							251.1068[M + H - CH ₃ NH ₂ - CH ₃ OH - CH ₃ - CO] ⁺ ,	
							$310.12054[M + H - CH_3NH_2 - CH_3]^+$	

49	13.54	C ₂₀ H ₁₇ NO ₅	352.1182	0.82	76455	+Н, -е	352.1183[M + H] ⁺ ,	oxoglaucine
							322.0717[M + H - 2CH ₃] ⁺ ,	
							336.0864[M + H - CH ₃] ⁺ ,	
							320.0916[M + H - CH ₃ OH] ⁺ ,	
							$308.0923[M + H - CO - CH_3]^+$,	
							294.0766[M + H – CO - 2CH ₃] ⁺ ,	
							$292.0974[M + H - CO - CH_3O]^+$,	
50	13.6	$C_{22}H_{28}NO_4^+$	370.2009	1.76	179649	-е	370.2019[M] ⁺ ,	
							$206.1184[M - C_{10}H_{12}O_2]^+,$	N-
							$190.0862[M - C_{10}H_{12}O_2 - CH_3 - 2H]^+,$	methyltetrahydropalmatine
							$191.0934[M - C_{10}H_{12}O_2 - CH_3]^+,$	
							354.1681[M - CH ₄] ⁺ ,	
							340.1486[M - 2CH ₃] ⁺	
51	13.61	$C_{21}H_{24}NO_4$	354.1696	-1.08	15630	-е	354.1698[M] ⁺ ,	8,9- dihydropalmatine
							352.1221[M - 2H] ⁺ ,	
							339.1445[M - CH ₃] ⁺ ,	
							322.0686[M - 2H - 2CH ₃] ⁺ ,	
52*	13.83	$C_{20}H_{21}NO_4$	340.1547	1.09	558282	+H	340.1548[M + H] ⁺ ,	tetrahydroberberine
							$176.0714[M + H - C_{10}H_{12}O_2]^+,$	
							324.1231[M - CH ₄] ⁺ ,	
							$174.0556[M + H - C_{10}H_{14}O_2]^+,$	
							$161.0483[M + H - C_{10}H_{14}O_2 - CH_3]^+,$	
							308.1285[M - CH ₃ OH] ⁺ ,	
							292.10203[M + H - CH ₃ - 2H - OCH ₃] ⁺ ,	
							$165.0915[M + H - C_{10}H_9NO_2]^+,$	
							$150.0668[M + H - C_{10}H_9NO_2 - CH_3]^+$,	

325.13568[M + H - CH₃]⁺

53 ^b	14.27	$C_{21}H_{23}NO_5$	370.1654	1.25	61086	+H	370.1654[M + H] ⁺ ,	protopine-type alkaloid
							$190.0868[M + H - C_{10}H_{10}O_2 - H_2O]^+,$	
							352.1538[M + H - H ₂ O] ⁺ ,	
							$208.0968[M + H - C_{10}H_{10}O_2]^+,$	
							$163.0761[M + H - C_{11}H_{14}NO_3]^+,$	
54 ^b	14.41	$C_{21}H_{23}NO_4$	354.1705	0.6	194877	+H	354.1705[M + H] ⁺ ,	tetrahydroprotoberberine-
							$190.0873[M + H - C_{10}H_{12}O_2]^+$	type alkaloid
							$188.0714[M + H - C_{10}H_{14}O_2]^+$	
							$175.0634[M + H - C_{10}H_{14}O_2 - CH_3]^+$	
							$160.0762[M + H - C_{10}H_{10}O_2 - CH_3OH]^+,$	
55	14.57	$C_{21}H_{22}NO_4^+$	352.1545	0.57	36130	-е	352.1546[M] ⁺ ,	dehydrocorybulbine
							337.1313[M - CH ₃] ⁺ ,	or palmatine
							336.1238[M - CH ₄] ⁺ ,	or 13-
							308.1280[M - CH ₄ - CO] ⁺ ,	methyldehydrocorydalmine
							320.1287[M - CH ₃ OH] ⁺ ,	or 13-methylpalmatrubine
							322.1079[M - 2CH ₃] ⁺ ,	or yanhusuine
							294.1126[M - 2CH ₃ - CO] ⁺	or 13-methylcolumbamine
							292.0968[M - 2CH ₃ -CO - 2H] ⁺	

56 ^b	14.58	C ₂₁ H ₂₅ NO ₅	372.1808	0.55	36963	+H	372.1809[M + H] ⁺ ,	protopine-type alkaloid
							354.1730[M + H - H ₂ O] ⁺ ,	
							$208.0968[M + H - C_{10}H_{12}O_2]^+,$	
							190.0868[M + H - $C_{10}H_{12}O_2 - H_2O]^+$,	
							$165.09153[M + H - C_{11}H_{14}NO_3]^+,$	
							$322.1073[M + H - C_2H_{10}O]^+$,	
57	14.59	C ₂₀ H ₁₅ NO ₄	334.1078	1.15	6345	+H	334.1074[M + H] ⁺ ,	dihydrosanguinarine
							306.1118[M + H - CO] ⁺ ,	
							304.0983[M + H - 2H - CO] ⁺	
58	14.76	$C_{21}H_{22}NO_4^+$	352.1548	1.37	254426	-е	352.1548[M] ⁺ ,	dehydrocorybulbine
							337.1313[M - CH ₃] ⁺ ,	or palmatine
							336.1238[M - CH ₄] ⁺ ,	or 13-
							308.1293[M - CH ₄ - CO] ⁺ ,	methyldehydrocorydalmine
							320.1287[M - CH ₃ OH] ⁺ ,	or 13-methylpalmatrubine
							322.1079[M - 2CH ₃] ⁺ ,	or yanhusuine
							294.1132[M - 2CH3 - CO] ⁺	or 13-methylcolumbamine
							$292.0976[M - 2CH_3 - CO - 2H]^+$	
59	14.79	$C_{20}H_{16}NO_4^+$	334.1079	9.58	107925	-е	334.1079[M] ⁺ ,	corysamine
							306.1118[M - CO] ⁺ ,	
							304.0968[M - CO - 2H] ⁺ ,	
							292.0980[M – CO - CH ₂] ⁺ ,	
							278.0810[M - 2CO] ⁺ ,	

60	14.86	C ₂₂ H ₂₇ NO ₄	370.2018	1.5	2650842	+H	370.2018[M + H]+,	corydaline
							192.1025 [M + H - $C_{11}H_{14}O_2$] ⁺ ,	
							$165.0919[M + H - C_{12}H_{15}NO_2]^+,$	
							$179.1074[M + H - C_{11}H_{13}NO_2]^+,$	
							354.1679[M + H - CH ₄] ⁺ ,	
							355.1765[M + H - CH ₃] ⁺ ,	
							338.1789[M + H - CH ₃ OH] ⁺ ,	
							$177.0797[M + H - C_{11}H_{14}O_2 - CH_3]^+,$	
							$162.05431[M + H - C_{11}H_{14}O_2 - 2CH_3]^+,$	
							$134.07218[M + H - C_{11}H_{14}O_2 - 2CH_3 - CO]^+,$	
							$153.08749[M + H - C_{12}H_{16}NO_2]^+,$	
							$218.11835[M + H - C_9H_{12}O_2]^+,$	
							322.14987[M + H - CH ₃ - 2H - OCH ₃] ⁺ ,	
							$150.0682[M + H - C_{12}H_{15}NO_2 - CH_3]^+,$	
							$206.11758[M + H - C_{10}H_{12}O_2]^+$	
61	14.98	$C_{21}H_{22}NO_4^+$	352.1548	1.3	803986	-е	352.1553[M] ⁺ ,	dehydrocorybulbine
							337.1310[M - CH ₃] ⁺ ,	or palmatine
							336.1238[M - CH ₄] ⁺ ,	or 13-
							308.1293[M - CH ₄ - CO] ⁺ ,	methyldehydrocorydalmine
							320.1287[M - CH ₃ OH] ⁺ ,	or 13-methylpalmatrubine
							322.1079[M - 2CH ₃] ⁺ ,	or yanhusuine
							294.1132[M - 2CH ₃ - CO] ⁺	or 13-methylcolumbamine
							292.0983[M - 2CH ₃ - CO - 2H] ⁺	

62	15.24	C ₂₀ H ₂₁ NO ₄	340.155	1.83	36554	+H	309.1129[M + H - CH ₃ NH ₂] ⁺ ,	nantenine or dicentrine
							278.1180[M + H - CH ₃ NH ₂ - OCH ₃] ⁺ ,	
							340.15467[M + H] ⁺ ,	
							294.0893[M + H - CH ₃ NH ₂ - CH ₃] ⁺ ,	
							$266.09375[M + H - CH_3NH_2 - CH_3 - CO]^+,$	
							263.0708[M+H - CH ₃ NH ₂ - OCH ₃ - CH ₃] ⁺ ,	
							235.0787[M + H - CH ₃ NH ₂ - OCH ₃ - CH ₃ - CO] ⁺ ,	
63	15.58	$C_{20}H_{19}NO_4$	338.1389	0.49	10581	+H	338.1387[M + H]+,	tetrahydrocorysamine
							$176.0710[M + H - C_{10}H_{10}O_2]^+,$	
							$191.0934[M + H - C_9H_8O_2]^+,$	
							$149.0600[M + H - C_{11}H_{11}NO_2]^+,$	
64	15.65	$C_{21}H_{21}NO_5$	368.1496	0.87	8596	+H	368.1493[M + H] ⁺ ,	corycavine
							352.1185[M + H - CH ₄] ⁺ ,	
							338.1009[M + H - 2H - CO] ⁺ ,	
							336.1238[M + H - 2H – CO - 2H] ⁺ ,	
65*	15.88	$C_{20}H_{18}NO_4$	336.1231	0.15	403600	-е	336.1236[M] ⁺ ,	berberine
							320.0923[M - CH ₄] ⁺ ,	
							292.0973[M - CH ₄ - CO] ⁺ ,	
							290.0808[M - CH ₄ -CO - 2H] ⁺ ,	
							321.0997[M - CH ₃] ⁺ ,	
							306.0767[M - 2CH ₃] ⁺ ,	
							$304.0973[M - CH_3OH]^+$,	
							278.0817[M-2CH ₃ -CO] ⁺	

66*	16.14	$C_{21}H_{22}NO_4^+$	352.1544	0.31	1179308	-е	352.1554[M] ⁺ ,	palmatine
							337.1310[M - CH ₃] ⁺ ,	
							336.12367[M - CH ₄] ⁺ ,	
							308.12860[M - CH ₄ - CO] ⁺ ,	
							278.0815[M - CH ₄ - CO - CH ₂ O] ⁺ ,	
							320.0941[M - CH ₃ OH] ⁺ ,	
							322.1079[M - 2CH ₃] ⁺ ,	
							294.1132[M - 2CH ₃ - CO] ⁺	
67	16.49	$C_{21}H_{19}NO_5$	366.134	0.98	73564	+H	366.1341[M + H] ⁺ ,	8-
							$320.0921[M + H - C_2H_6O]^+,$	hydroxyldihydrochelerythri
							336.0841[M + H - 2CH ₃] ⁺ ,	ne
							351.1101[M + H - CH ₃] ⁺ ,	
68	16.63	$C_{21}H_{22}NO_4^+$	352.1546	0.83	100363	-е	352.1545[M] ⁺ ,	dehydrocorybulbine
							337.1306[M - CH ₃] ⁺ ,	or palmatine
							336.1230[M - CH ₄] ⁺ ,	or 13-
							308.1277[M - CH ₄ - CO] ⁺ ,	methyldehydrocorydalmine
							320.0941[M - CH ₃ OH] ⁺ ,	or 13-methylpalmatrubine
							322.1079[M - 2CH ₃] ⁺ ,	or yanhusuine
							294.1132[M - 2CH ₃ - CO] ⁺	or 13-methylcolumbamine
							$292.0968[M - 2CH_3 - CO - 2H]^+$	
69 ^b	17.25	$C_{22}H_{26}NO_{4}{}^{+}$	368.1857	0.14	16200	-е	368.1858[M] ⁺ ,	unknow
							352.1539[M - CH ₄] ⁺ ,	
							324.1593[M - CH ₄ - CO] ⁺ ,	
							336.1200[M - CH ₃ OH] ⁺ ,	
							338.1387[M - 2CH ₃] ⁺ ,	
70	17.34	$C_{20}H_{25}NO_3$	328.191	0.83	6807	+H	328.1908[M+H] ⁺ ,	leonticine

							$283.1337[M + H - (CH_3)_2N]^+,$	
71ª	17.88	C ₂₂ H ₂₇ NO ₅	386.196	-0.6	3745	+H	386.1963[M + H] ⁺ ,	muramine
							354.1685[M + H - CH ₃ OH] ⁺ ,	
							$338.1391[M + H - C_2H_8O]^+,$	
72*	18.03	$C_{22}H_{24}NO_4^+$	366.1707	1.87	3759312	+H	366.1706[M] ⁺ ,	dehydrocorydaline
							350.1390[M - CH ₄] ⁺ ,	
							351.1468[M - CH ₃] ⁺ ,	
							$322.1442[M - CH_4 - CO]^+$,	
							292.0972[M - CH ₄ -CO - CH ₂ O] ⁺ ,	
							336.1238[M - 2CH ₃] ⁺ ,	
							319.1186[M - CH ₃ - CH ₃ OH] ⁺ ,	
							334.1079[M - 2CH ₃ - 2H] ⁺ ,	
							308.1289[M - 2CH ₃ - CO] ⁺ ,	
							306.0647[M - 2CH ₃ -CO - 2H] ⁺	
73 ^b	18.86	$C_{22}H_{24}NO_4^+$	366.17	0.17	174182	+H	366.1700[M] ⁺ ,	dehydrocorydaline
							350.1381[M - CH ₄] ⁺ ,	
							351.1459[M - CH ₃] ⁺ ,	
							321.0997[M - 3CH ₃] ⁺ ,	
							$322.1442[M - CH_4 - CO]^+$,	
							320.0921[M-CH ₄ -CO-2H] ⁺ ,	
							$292.0972[M - CH_4 - CO - CH_2O]^+$,	
							336.1231[M - 2CH ₃] ⁺ ,	
							319.1186[M - CH ₃ - CH ₃ OH] ⁺ ,	
							334.1076[M - 2CH ₃ - 2H] ⁺ ,	
							308.1289[M-2CH ₃ -CO] ⁺ ,	
							306.0647[M - 2CH ₃ -CO - 2H] ⁺	

74	19.13	C ₂₀ H ₁₇ NO ₅	352.1183	1.04	221806	+H, +Na	352.1184[M + H]+,	oxoglaucine
							306.0764[M + H - CH ₃ OH] ⁺ ,	
							322.0712[M + H - 2CH ₃] ⁺ ,	
							337.0946[M + H - CH ₃] ⁺ ,	
							336.0868[M + H - CH ₄] ⁺ ,	
							$304.0612[M + H - CH_3 - COOH]^+$	
75	19.28	$C_{19}H_{16}NO_4{}^+$	322.1069	-1.41	4640	-е	322.1081[M] ⁺ ,	berberrubine or
							320.0893[M - 2H] ⁺ ,	dehydrocheilanthifoline
							307.0842[M - CH ₃] ⁺ ,	
							306.0769[M - CH ₄] ⁺ ,	
							279.0897[M - CH ₃ - CO] ⁺ ,	
							278.0807[M - CH ₄ - CO] ⁺ ,	
76	23.72	$C_{21}H_{21}NO_5$	368.1492	-0.05	5356	+H	368.1487[M + H]+,	corycavine
							353.1255[M + H - CH ₃] ⁺ ,	
							338.1408[M + H - 2H - CO]+,	
							336.1217[M + H - 2H – CO - 2H] ⁺ ,	
77	24.25	$C_{21}H_{21}NO_5$	368.1496	0.9	16181	+Н, -е	368.1492[M + H] ⁺ ,	corycavine
							353.1255[M + H - CH ₃] ⁺ ,	
							338.1038[M + H - 2H - CO] ⁺ ,	
							336.1238[M + H - 2H – CO - 2H] ⁺ ,	
78	24.3	$C_{21}H_{19}NO_6$	382.1276	4.61	25705	-е	382.1285[M + H] ⁺ ,	oxychelidonine
							338.1391[M + H - COO] ⁺ ,	
							$350.0661[M + H - C_2H_8]^+,$	
79	24.38	$C_{22}H_{25}NO_5$	384.1806	0.26	5028	+H	384.1806[M + H]+,	7-aldehyde glaucine
							352.1539[M + H - CH ₃ OH] ⁺ ,	
							$320.0920[M + H - C_3H_{12}O]^+,$	

80	24.76	C ₁₉ H ₁₃ NO ₅	336.0874	2.22	39448	+H, e,	336.0875[M + H] ⁺ ,	8-oxocoptisine
						+Na	308.0925[M + H - CO] ⁺ ,	
							306.0769[M + H – CO - 2H] ⁺ ,	
81 ^a	25.19	C ₂₀ H ₁₃ NO ₅	348.0878	3.36	11474	+Н, -е	348.0875[M + H] ⁺ ,	oxysanguinarine
							333.0644[M + H - CH ₃] ⁺ ,	
							332.0923[M + H - CH ₃ - H] ⁺ ,	
							337.09453[M + H - CH ₃] ⁺ ,	
							$336.0868[M + H - CH_4]^+$	
							304.06115[M + H - CH ₃ - COOH] ⁺	
82	25.99	$C_{21}H_{23}NO_4$	354.1695	-1.44	10871	+H	354.1693[M + H] ⁺ ,	dehydroglaucine
							323.1153[M + H - CH ₃ NH ₂] ⁺ ,	
							$280.0967[M + H - CH_3NH_2 - CH_3OH - CH_3 - CO]^+$,	
							$308.0921[M + H - CH_3NH_2 - CH_3]^+$	
83	26	$C_{20}H_{19}NO_4$	338.1389	0.76	28554	+H	338.1388[M + H]+,	dehydronantenine
							307.1201 [M + H - CH ₃ NH ₂] ⁺ ,	
							292.0969[M + H - CH ₃ NH ₂ - CH ₃] ⁺ ,	
							324.1232[M + H - CH ₂] ⁺ ,	
							322.1075[M + H - CH ₃] ⁺ ,	
							$280.0973[M + H - C_3H_6O]^+,$	
84	26.49	$\mathrm{C}_{20}\mathrm{H}_{15}\mathrm{NO}_{4}$	334.1077	0.86	8441	+H	334.1076[M + H]+,	dihydrosanguinarine
							332.0807[M + H - 2H]+,	
							304.0950[M + H - 2H - CO] ⁺ ,	
							318.0764[M + H - CH ₃] ⁺ ,	

85	26.77	$C_{21}H_{19}NO_4$	350.1392	1.52	63104	+H	350.1392[M + H] ⁺ ,	dihydrochelerythrine
							348.1272[M + H - 2H] ⁺ ,	
							318.0774[M + H - 2H - 2CH ₃] ⁺ ,	
							290.0819[M + H - 2H - 2CH ₃ - CO] ⁺ ,	
							335.1148[M + H - CH ₃] ⁺ ,	
							334.1081[M + H - CH ₄] ⁺ ,	
							332.0887[M + H - 2H - CH ₃ - H] ⁺ ,	
							302.0818[M + H - 2H - CH ₃ - H - CO - 2H] ⁺ ,	
86	26.97	$C_{20}H_{15}NO_4 \\$	334.1078	1.12	72976	+H	334.1076[M + H] ⁺ ,	dihydrosanguinarine
							332.0887[M + H - 2H] ⁺ ,	
							304.0950[M + H - 2H - CO] ⁺ ,	
							318.0765[M + H - CH ₃] ⁺ ,	

*: Compared with a standard substance;

a:Reported for the first time in yanhusuo

b: Potential new compounds