Supplementary Information

Design, synthesis and biological evaluation of 2,3-dihydroimidazo[1,2-c]quinazoline derivatives as novel phosphatidylinositol 3-kinase and histone deacetylase dual inhibitors

${ }^{a}$ Department of Organic Chemistry, School of Science, 639 Longmian Avenue, China Pharmaceutical University, Nanjing 211198, China. E-mail: lutao@cpu.edu.cn (T. Lu), zhuyong@cpu.edu.cn (Y. Zhu). Fax: +86(25)86185179 (T. Lu), +86(25)86185182 (Y. Zhu).
${ }^{b}$ Department of Medicinal Chemistry, School of Pharmacy, Nanjing University of Chinese Medicine Hanlin College, 6 Xueyuan Road, Taizhou 225300, China.
${ }^{\text {c }}$ Shanxi Key Laboratory of Natural Products \& Chemical Biology, College of Science, Northwest A\&F University, Yangling 712100, China.
${ }^{d}$ Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.

Table of content

General experimental 2
Functional assay 2
Synthetic Procedure and analytic data4
HPLC Spectra for Compound Purity 23

General experimental

All chemicals were reagent grade and purchased from commercial suppliers. Melting points were determined in open capillaries on a WRS-1A digital melting point apparatus (Shenguang). NMR spectra was recorded in CDCl_{3} and DMSO-d6 on a Bruker DRX-300 (300 MHz) using TMS as internal standard. The chemical shifts are reported in ppm (δ) and coupling constants (δ) values are given in Hertz (Hz). Mass spectra were obtained from Agilent $1100 \mathrm{LC} / \mathrm{MSD}$ (Agilent) or Q-tof micro MS (Micromass) and the high-resolution (HR) electrospray ionization-time of flight (ESI-TOF)-MS was recorded on Agilent 6224 A (TOF) LC/MS. The purity of all tested compounds was established by HPLC to be $>95.0 \%$. HPLC analysis was performed at room temperature using an Agilent Eclipse XDB-C18 ($250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$) and 35% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as a mobile phase and plotted at 254 nm . All cells were obtained from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China).

Functional assay

Computational Methods

All computational work was performed in Discovery Studio (2.5). Docking was conducted using cdocker based on the cocrystal of PI3K and Copanlisib (PDB: 5G2N). PI3K was used as receptor. The cavity occupied by Copanlisib was selected as the ligand binding site. The docking sphere radius value based on Copanlisib is default. Water molecules outside the binding pocket were excluded. The energy minimization for compounds 12b, 12c and 12e was performed by Powell's method for 1000 iterations using Tripos force field and with Gasteiger-Hückel charge. The other docking parameters were kept at default. The same approach is used to the cocrystal of HDAC1 homolog protein and Vorinostat (PDB: 1C3S).

HDAC enzymatic assay in vitro

All three full-length recombinant human HDACs (rhHDACs) 1, 6 and 8 were expressed in insect High5 cells using a baculoviral expression system, and all His6tagged and GST-fusion proteins was purified using Ni-NTA (QIAGEN). The deacetylase activity of HDAC1 and 8 were assayed with a HDAC substrate (Ac-Lys-Tyr-Lys(e-acetyl)-AMC), and HDAC6 was assayed with another HDAC substrate (Boc-Lys(e-acetyl)-AMC).The total HDAC assay volume was $25 \mu \mathrm{~L}$ and all the assay components were diluted in HEPES buffer (25 mM HEPES, $137 \mathrm{mM} \mathrm{NaCl}, 2.7 \mathrm{mM}$ KCl and $4.9 \mathrm{mM} \mathrm{MgCl}_{2}, \mathrm{pH}=8.0$). The reaction was carried out in the 384 -well plate (OptiPlateTM-384F, PerkinElmer). In brief, the HDAC assay mixture contained the substrate ($5-50 \mu \mathrm{M}, 5 \mu \mathrm{~L}$), rhHDAC isoforms (20-200 nM) and inhibitor ($1 \mu \mathrm{~L}$). Positive controls contained all the above components except the inhibitor. The negative controls contained neither enzyme nor inhibitor. The HDAC6 assay
components were incubated at room temperature for 3 h , and HDAC1 and 8 were incubated for 24 h . The reaction was quenched with the addition of $25 \mu \mathrm{~L}$ Trypsin with the final concentration of 0.31%. After 30 min incubation at room temperature, the 384 -well plate was read at wavelengths 355 nm (excitation) and 460 nm (emission) using Envision (PerkinElmer). Each experiment was done in triplicate.

PI3K enzymatic assay in vitro

The inhibition of PI3Ks (P110 $\alpha / 85 \alpha$, Promege; P110 β, Millipore; P110 γ, Invitrogen; P110 δ, Millipore) activity was determined using the Kinase-Glo Plus Luminescent

Kinase assay (PI3K α, Promege) and ADP-Glo Kinase assay (PI3K β, γ and δ, Promege), respectively. Test compounds were serially diluted to the desired concentrations and then 2.5 mL of each of them was added to a 384 -well plate (Corning) as assay plate. 1 x kinase buffer was prepared contained 50 mM HEPES (pH 7.5), 3 mM MgCl 2 , 1 mM EGTA, $100 \mathrm{mM} \mathrm{NaCl}, 0.03 \%$ CHAPS, 2 mM DTT. PI3K enzyme was diluted in the 1 x kinase buffer to give 4 x kinase solutions. PI3K α, β, δ and δ were diluted to the final concentrations of $1.65 \mathrm{nM}, 4.8 \mathrm{nM}, 7.6 \mathrm{nM}$ and 5.7 nM , respectively. 2.5 mL of kinase solution was then added to each well of the assay plate, except for control well without enzyme (add 2.5 mL of 1x kinase buffer instead). Meanwhile, PIP2 substrate and ATP were diluted in the 1x kinase buffer to give 2 x substrate solution with final concentrations of 50 mM of PIP2 and 25 mM of ATP. After that, 5 mL of substrate solution was added to each well of the assay plate to start reaction. The assay plate was covered and incubated at room temperature for 1 h . As for PI3K $\alpha, 10 \mathrm{~mL}$ of Kinase-Glo reagent was then added to each well of the assay plate to stop the reaction. Subsequently, the mixture was treated briefly with centrifuge, shaked slowly on the shaker for 15 min before reading on a plate reader for luminescence. As for PI3K β, γ and $\delta, 5 \mathrm{~mL}$ reaction mixture was transferred from 384 -well to a new 384 plate and 5 mL of ADP-Glo reagent was added to each well to stop the reaction. The mixture was treated briefly with centrifuge, shaked slowly on the shaker and equilibrated for 40 min .10 mL Kinase Detection reagentwas added to each wells, shaked for 1 min and equilibrated for 1 h before reading on a plate reader for luminescence. Finally, conversion datawas collected on Flex station and RLU values were converted to inhibition values using the formula of (sample RLU $\min) /($ max-min $) \times 100$. Herein, "min" means the RLU of no enzyme control and "max" means the RLU of DMSO control.

Cell culture and Cytotoxicity/proliferation assay

The antiproliferative activitives of compounds $\mathbf{1 2 b}, 12 \mathrm{c}, \mathbf{1 2 e}, \mathbf{1 2 h}$ and $\mathbf{1 2 i}$ were evaluated against HCT116, K562 and Hut78 cell lines by the standard MTT assay in vitro, with Vorinostat and Copanlisib as the positive control. The cancer cell line was cultured in RPMI 1640 medium with 10% fetal bovine serum (FBS). Approximate 2.5×10^{3} cells, suspended in RPMI 1640 medium, were plated into each well of a 96well plate and incubated in $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$ for 24 h . The tested compounds at the
indicated final concentrations were added to the culture medium and incubated for 48 h. Fresh MTT was added to each well at the terminal concentration of $0.5 \mathrm{mg} / \mathrm{mL}$, and incubated with cells at $37^{\circ} \mathrm{C}$ for 4 h . After the supernatant was discarded, $150 \mu \mathrm{~L}$ DMSO was added to each well, and the absorbance values were determined by a microplate reader (Bio-Rad, Hercules, CA, USA) at 490 nm .

Synthetic Procedure and analytic data

4-formyl-2-methoxyphenyl acetate (2)
Vanillin ($\mathbf{1} ; 20 \mathrm{~g}, 131 \mathrm{mmol}$), acetic anhydride ($26 \mathrm{~mL}, 275 \mathrm{mmol}$) were stirred in 80 $\mathrm{mL} \mathrm{CH} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ for 5 min . Then triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)(48 \mathrm{~mL}, 346 \mathrm{mmol})$ and DMAP ($0.2 \mathrm{~g}, 1.64 \mathrm{mmol}$) were added and stirred for 3 h at room temperature. After the completion of reaction, the organic phase was washed with dilute HCl , water and brine, dried over with magnesium sulfate. The solvent was removed by distillation under reduced pressure, the crude product was recrystallized from petroleum ether/ethyl acetate to give compound $\mathbf{2}$ as a white solid ($21.1 \mathrm{~g}, 85 \%$); mp: 76~78 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.96$ (s, 1H, -CHO), 7.51 (m, 2H, H-Ar), 7.23 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 190.1,167.8,151.8,145.2,134.7,124.8,123.9,110.7,55.4,20.1 ;$ ESI-MS m/z: $195.1[\mathrm{M}+\mathrm{H}]^{+}$.

4-formyl-2-methoxy-3-nitrophenyl acetate (3)
Fuming nitric acid (80 mL) was cooled to $0^{\circ} \mathrm{C}$ and compound $2(34 \mathrm{~g}, 175 \mathrm{mmol})$ was added portionwise, keeping the internal temperature below $5^{\circ} \mathrm{C}$. After 2 h the resulting mixture was poured over ice with stirring. The slurry was filtered and the resulting solids were washed with water ($10 \mathrm{~mL} \times 3$) and air-dried to give the desired product $\mathbf{3}$ as a yellow solid ($17 \mathrm{~g}, 41 \%$); mp: 86~88 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , DMSO$\left.d_{6}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.94(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 7.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 3.87$ (s, 3H, -OCH3), 2.40 (s, 3H, $-\mathrm{COCH}_{3}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{M}\right.$, DMSO- $\left.d_{6}\right) \delta(\mathrm{ppm}): 186.2,168.0,150.1$, 146.1, 145.2, 126.2, 126.0, 125.5, 62.3, 21.2; ESI-MS m/z: $240.0[\mathrm{M}+\mathrm{H}]^{+}$.

4-hydroxy-3-methoxy-2-nitrobenzaldehyde (4)
Compound 3 (17 g, 71.1 mmol), $\mathrm{KOH}(11.8 \mathrm{~g}, 210 \mathrm{mmol})$ were stirred in 120 mL
$\mathrm{H}_{2} \mathrm{O}$ at $100^{\circ} \mathrm{C}$ for 15 min . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and acidified with
dilute $\mathrm{HCl}(\mathrm{pH} 5-6)$. The precipitant was filtered, washed by water and air-dried to give the corresponding compound 4 as a yellow solid ($11 \mathrm{~g}, 79 \%$) ; mp: 134~137 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, \mathrm{DMSO}-d 6) \delta 9.69(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.68(\mathrm{~d}, ~ J=7.7,1 \mathrm{H}, H-\mathrm{Ar})$, $7.19(\mathrm{~d}, J=7.7,1 \mathrm{H}, H$-Ar $), 3.82\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-d_{6}\right) \delta$ (ppm): 190.9, 162.2, 148.6, 144.1, 133.7, 123.1, 122.4, 66.0; ESI-MS m/z: 198.0 $[\mathrm{M}+\mathrm{H}]^{+}$.

4-(benzyloxy)-3-methoxy-2-nitrobenzaldehyde (5)
Compound $4(11 \mathrm{~g}, 55.8 \mathrm{mmol})$ was dissolved in 50 mL DMF and the stirred solution was treated with potassium carbonate $(10 \mathrm{~g}, 72.4 \mathrm{mmol})$ followed by benzyl bromide $(11 \mathrm{~g}, 64.3 \mathrm{mmol})$ at the room temperature. After stirring for 4 h the reaction mixture was poured into 60 mL water, then extracted with EtOAc $(30 \mathrm{~mL} \times 2)$. The organic layer was washed with brine ($30 \mathrm{~mL} \times 2$), dried over sodium sulfate and concentrated under reduced pressure. The resulting solids were triturated with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ to give the corresponding compound 5 as a yellow solid $(9.8 \mathrm{~g}, 61 \%) ; \mathrm{mp}: 110 \sim 112^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, \mathrm{DMSO}-d 6) \delta 9.79(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.88(\mathrm{~d}, J=7.6,1 \mathrm{H}, H-\mathrm{Ar})$, $7.59(\mathrm{~d}, J=7.6,1 \mathrm{H}, H-\mathrm{Ar}), 7.52(1 \mathrm{H}, \mathrm{m}, H-\mathrm{Ar}), 7.49(1 \mathrm{H}, \mathrm{m}, H-\mathrm{Ar}), 7.39(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-$ Ar), $5.38(2 \mathrm{H}, \mathrm{s},-\mathrm{CH} 2), 3.06(3 \mathrm{H}, \mathrm{s},-\mathrm{CH} 3) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d} 6) \delta(\mathrm{ppm}):$ $188.1,159.7,143.6,137.1,131.1,130.9,130.1,129.7,127.9,122.7,116.5,73.8,64.6$; ESI-MS m/z: $288.1[\mathrm{M}+\mathrm{H}]^{+}$.

2-(4-(benzyloxy)-3-methoxy-2-nitrophenyl)-4,5-dihydro-1H-imidazole (6)
Compound $5(9.5 \mathrm{~g}, 33.1 \mathrm{mmol})$ and ethane-1, 2-diamine $(3.8 \mathrm{~mL}, 56.9 \mathrm{mmol})$ were stirred in 160 mL tert-butanol at room temperature for 0.5 h . Then, potassium carbonate $(10 \mathrm{~g}, 72.4 \mathrm{mmol})$ and iodine $(11 \mathrm{~g}, 43.3 \mathrm{mmol})$ were added and stirred for 4 h at $85^{\circ} \mathrm{C}$. The solution was concentrated under reduced pressure. The oil, thus
obtained, was treated with 80 mL water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL} \times 2)$. Then the organic layer was washed with saturated sodium thiosulfate solution ($50 \mathrm{~mL} \times 2$), dried over sodium sulfate, filtered and concentrated under reduced pressure. The resulting residue was further purified by column chromatography to afford white solid 6 (6.1g, 56\%); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{DMSO}-d 6$) $\delta 7.51$ (m, 3H, H-Ar), 7.44 (m, 3H, $H-\mathrm{Ar}), 7.38(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 6.90(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NH}-), 5.30\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ph}\right), 3.85(3 \mathrm{H}, \mathrm{s},-$ CH_{3}), 3.32 (s, $4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}, ~ D M S O-\mathrm{d} 6) ~ \delta(\mathrm{ppm}): 168.1,157.6$, 142.8, 136.7, 131.1, 130.9, 130.1, 129.7, 122.2, 120.7, 120.1, 73.9, 64.8, 49.7; ESIMS $m / z: 328.1[\mathrm{M}+\mathrm{H}]^{+}$.

3-(benzyloxy)-6-(4,5-dihydro-1H-imidazol-2-yl)-2-methoxyaniline (7) Compound $\mathbf{6}(6.1 \mathrm{~g}, 18.6 \mathrm{mmol})$ and iron powder $(5.2 \mathrm{~g}, 93 \mathrm{mmol})$ were suspended in 100 mL glacial acetic acid and 40 mL water. Then the mixture was stirred at room temperature for 24 h at which time the reaction mixture was filtered through a pad of Celite. The filtrate was concentrated under reduced pressure. The resulting residue was further purified by column chromatography to afford white solid 7 ($4.2 \mathrm{~g}, 76 \%$); ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}, \mathrm{DMSO}-d 6) \delta 7.49-7.28$ (m, 5H, H-Ar), 7.16 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, H-Ar), 6.92 (brs, 2H, $-\mathrm{N} H_{2}$), 6.70 (s, $1 \mathrm{H}, H-\mathrm{Ar}$), 6.35 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, H-\mathrm{Ar}$), 5.13 (s, $2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ph}$), $3.82\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.26(\mathrm{t}, J=$ 7.0, $2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO-d6) $\delta(\mathrm{ppm}): 168.2,156.9,144.6$, 137.8, 131.5, 131.1, 130.9, 130.1, 122.8, 104.7, 102.1, 73.8, 68.2, 49.5; ESI-MS m/z: $298.2[\mathrm{M}+\mathrm{H}]^{+}$.

8-(benzyloxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-amine (8)
Cyanogen bromide ($3.4 \mathrm{~g}, 32.1 \mathrm{mmol}$) was added to a mixture of compound $7(4.2 \mathrm{~g}$, 14.1 mmol) and triethylamine ($8.5 \mathrm{~mL}, 61.3 \mathrm{mmol}$) in $125 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ precooled to $0^{\circ} \mathrm{C}$. The reaction mixture was stirred and allowed to warm to room temperature gradually. After 4 h it was diluted with saturated sodium bicarbonate solution. The organic layer was washed with brine, dried over sodium sulfate and concentrated under reduced pressure. The resulting residue was further purified by column chromatography to afford white solid $8(4.1 \mathrm{~g}, 90 \%)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSOd6) $\delta 7.30-7.47(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.31(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH} 2 \mathrm{Ph}), 4.32\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 4.13$ (m, 2H, $-\mathrm{CH}_{2} \mathrm{CH}_{2}-$), $3.81\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d} 6) ~ \delta(\mathrm{ppm}): 158.1$,

General synthesis of amides of 5-amino-7-methoxy-8-benzyloxy-2,3-dihydroimidazo [1,2-c]quinazoline (9a-9f)
Carboxylic acid (1.20 mmol), DMF (0.05 mL) and $\mathrm{SOCl}_{2}(6.00 \mathrm{~mL})$ were mixed and stirred at reflux for 4 h , then cooled and evaporated to give reactive acyl chloride. Then the solution of acyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.00 \mathrm{~mL})$ was added dropwise to the solution of compound $\mathbf{8}(1.00 \mathrm{mmol})$ and triethylamine $(0.50 \mathrm{~mL}, 3.60 \mathrm{mmol})$ in 20 $\mathrm{mL} \mathrm{CH} 2 \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. After stirring overnight at room temperature, the reaction mixture was then poured in excess of diluted NaOH and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over with sodium sulfate and concentrated under reduced pressure. The crude product was further purified by column chromatography to afford solids 9a-9f.

N-(8-(benzyloxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide (9a)
Compound 9a was synthesized as a yellow solid ($720 \mathrm{mg}, 85 \%$) by treatment of nicotinic acid ($291 \mathrm{mg}, 2.38 \mathrm{mmol}$), $\mathrm{SOCl}_{2}(12 \mathrm{~mL})$, DMF (0.10 mL), compound $\mathbf{8}$ ($640 \mathrm{mg}, 1.99 \mathrm{mmol}$) and triethylamine ($1 \mathrm{~mL}, 7.20 \mathrm{mmol}$) according to abovementioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.75(\mathrm{~s}, 1 \mathrm{H},-$ NHCO-), 9.33 (s, 1H, H-Py), 8.73 (m, 1H, H-Py), 8.45 (m, 1H, H-Py), 7.62 (m, 1H, H-Py), 7.50 (m, 2H, H-Ar), 7.43 (m, 3H, H-Ar), 7.32 (m, 1H, H-Ar), 7.16 (m, 1H, H$\mathrm{Ar}), 5.29\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.10\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$, 3.93 (s, 3H, $-\mathrm{OCH}_{3}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO-d6) $\delta(\mathrm{ppm}): 176.1,157.0,149.3$, 148.3, 147.7, 146.1, 136.2, 134.1, 133.0, 131.7, 130.9, 128.7, 128.0, 127.7, 126.2, 123.8, 112.6, 101.2, 73.1, 51.2, 46.0, 45.2; ESI-MS m/z: $428.2[\mathrm{M}+\mathrm{H}]^{+}$.

N-(8-(benzyloxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)benzamide
(9b)
Compound 9b was synthesized as a yellow solid ($726 \mathrm{mg}, 86 \%$) by treatment of benzoic acid ($300 \mathrm{mg}, 2.44 \mathrm{mmol}$), $\mathrm{SOCl}_{2}(12 \mathrm{~mL})$, DMF (0.1 mL), compound $\mathbf{8}$ ($640 \mathrm{mg}, 1.99 \mathrm{mmol}$) and triethylamine ($1 \mathrm{~mL}, 7.20 \mathrm{mmol}$) according to abovementioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.91(\mathrm{~s}, 1 \mathrm{H},-$ NHCO-), 8.20 (m, 2H, H-Ar), 7.66 (m, 1H, $H-\mathrm{Ar}$), 7.57 (m, $2 \mathrm{H}, H-\mathrm{Ar}$), $7.50(\mathrm{~m}, 2 \mathrm{H}$, H-Ar), 7.43 (m, 3H, H-Ar), 7.36 (m, 1H, H-Ar), 7.17 (m, 1H, H-Ar), 5.28 (s, 2H, $\left.\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.10\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.94(\mathrm{~s}, 3 \mathrm{H},-$ OCH_{3}); ${ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d} 6) ~ \delta(\mathrm{ppm}): 176.1,157.0,149.3,146.1,134.1$, $133.8,133.0,132.5,130.9,129.8,128.9,128.7,128.0,127.7,123.8,112.6,101.2$, 73.1, 51.2, 46.0, 45.2; ESI-MS $m / z: 427.2[\mathrm{M}+\mathrm{H}]^{+}$.

N -(8-(benzyloxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-6methoxynicotinamide (9c)
Compound $\mathbf{9 c}$ was synthesized as a yellow solid ($740 \mathrm{mg}, 81 \%$) by treatment of 6methoxynicotinic acid ($370 \mathrm{mg}, 2.42 \mathrm{mmol}$), $\mathrm{SOCl}_{2}(12 \mathrm{~mL})$, DMF (0.1 mL), compound $8(640 \mathrm{mg}, 1.99 \mathrm{mmol})$ and triethylamine ($1 \mathrm{~mL}, 7.20 \mathrm{mmol}$) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, ~ D M S O-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.73$ (s, 1H, -NHCO-), 8.23 (m, 1H, H-Py), 7.92 (m, 1H, H-Py), 7.51 (m, 2H, H-Ar), 7.43 (m, 3H, H-Ar), 7.33 (m, 1H, H-Ar), 7.15 (m, 1H, H-Ar), 7.09 (m, 1H, H-Py); 5.28 (s, $\left.2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.10\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 3.93(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{OCH}_{3}$); 3.83 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d} 6) ~ \delta(\mathrm{ppm}): 176.1,164.7$, $157.0,152.1,149.3,146.1,140.3,134.1,133.0,130.9,128.7,128.0,127.7,123.8$, 117.7, 113.9, 112.6, 101.2, 73.1, 51.2, 50.8, 46.0, 45.2; ESI-MS $m / z: 427.2[\mathrm{M}+\mathrm{H}]^{+}$.

N -(8-(benzyloxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-4methoxybenzamide (9d)
Compound 9d was synthesized as a yellow solid ($730 \mathrm{mg}, 81 \%$) by treatment of 4methoxybenzoic acid ($362 \mathrm{mg}, 2.38 \mathrm{mmol}$), $\mathrm{SOCl}_{2}(12 \mathrm{~mL})$, DMF (0.1 mL), compound $8(640 \mathrm{mg}, 1.99 \mathrm{mmol})$ and triethylamine ($1 \mathrm{~mL}, 7.20 \mathrm{mmol}$) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.91$ (s, 1H, -NHCO-), 8.09 (m, 2H, H-Ar), 7.57 (m, 2H, H-Ar), $7.50(\mathrm{~m}, 2 \mathrm{H}, H-\mathrm{Ar}), 7.43$ (m, 3H, H-Ar), 7.36 (m, 1H, H-Ar), 7.18 (m, $1 \mathrm{H}, H-\mathrm{Ar}$), 7.13 (m, 1H, $H-\mathrm{Ar}$), 5.28 (s, $\left.2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.10\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 3.94$ (s,
$3 \mathrm{H},-\mathrm{OCH}_{3}$), $3.89\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d} 6) ~ \delta(\mathrm{ppm}): 176.1$, 165.1, 157.0, 149.1, 146.1, 134.0, 133.0, 130.9, 128.7, 128.0, 127.6, 126.2, 125.2, 123.8, 115.7, 112.6, 101.2, 73.1, 51.3, 51.0 46.0, 45.2; ESI-MS m/z: $457.2[\mathrm{M}+\mathrm{H}]^{+}$.

N-(8-(benzyloxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-3methylbenzamide (9e)
Compound $\mathbf{9 e}$ was synthesized as a yellow solid ($720 \mathrm{mg}, 82 \%$) by treatment of 3methylbenzoic acid ($324 \mathrm{mg}, 2.38 \mathrm{mmol}$), $\mathrm{SOCl}_{2}(12 \mathrm{~mL})$, DMF (0.1 mL), compound $\mathbf{8}(640 \mathrm{mg}, 1.99 \mathrm{mmol})$ and triethylamine ($1 \mathrm{~mL}, 7.20 \mathrm{mmol}$) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.91$ (s, 1H, -NHCO-), 7.97 (m, 1H, H-Ar), 7.91 (m, 1H, H-Ar), 7.50 (m, 2H, $H-\mathrm{Ar}$), 7.43 (m, 3H, H-Ar), 7.36 (m, 1H, H-Ar), 7.31 (m, 1H, H-Ar), 7.26 (m, $1 \mathrm{H}, H-\mathrm{Ar}$), 7.17 (m, $1 \mathrm{H}, \mathrm{H}-\mathrm{Ar}), 5.28\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ar}\right), 4.10\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06(\mathrm{~m}, 2 \mathrm{H}$, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.46\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSOd6) $\delta(\mathrm{ppm}): 176.1,157.0,149.3,146.1,139.6,134.9,134.1,133.5,133.0,132.3$, $130.9,129.8,128.7,128.1,127.7,125.4,123.8,112.6,101.2,73.1,51.3,46.0,45.2$, 23.1; ESI-MS m/z: $441.2[\mathrm{M}+\mathrm{H}]^{+}$.

N-(8-(benzyloxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-1-methyl-1H-imidazole-5-carboxamide (9f)
Compound $\mathbf{9 f}$ was synthesized as a yellow solid ($710 \mathrm{mg}, 83 \%$) by treatment of 1-methyl-1H-imidazole-5-carboxylic acid ($300 \mathrm{mg}, 2.38 \mathrm{mmol}$), $\mathrm{SOCl}_{2}(12 \mathrm{~mL}$), DMF $(0.1 \mathrm{~mL})$, compound $\mathbf{8}(640 \mathrm{mg}, 1.99 \mathrm{mmol})$ and triethylamine $(1 \mathrm{~mL}, 7.20 \mathrm{mmol})$ according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 M , DMSO- d_{6}) δ (ppm): 12.91 (s, 1H, -NHCO-), 8.59 (m, 1H, H-imidazole), 8.01 (m, 1H, H-imidazole), 7.50 (m, 2H, H-Ar), 7.43 (m, 3H, H-Ar), 7.36 (m, 1H, $H-\mathrm{Ar}$), 7.17 (m, 1H, $H-\mathrm{Ar}$), $5.28\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH} \mathrm{O}_{2} \mathrm{Ar}\right), 4.10\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right)$, 3.94 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$), $3.90\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NCH}_{3}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d} 6) \delta(\mathrm{ppm}):$ 176.1, 157.0, 155.6, 149.3, 146.1, 134.1, 133.0, 132.6, 132.1, 130.9, 128.7, 128.1, 127.7, 123.8, 112.6, 101.2, 73.1, 51.3, 46.0, 45.2, 35.1; ESI-MS $m / z: 431.2[\mathrm{M}+\mathrm{H}]^{+}$.

General synthesis of amides of 5-amino-7-methoxy-8-hydroxy-2,3-dihydroimidazo [1,2-c]quinazoline (10a-10f)
Compound 9 (1 mmol) was added portionwise to a round-bottom flask containing trifluoroacetic acid (TFA) (25 mL) precooled with an ice bath. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ and allowed to stir at this temperature for 5 h , at which time it was cooled to RT. Then, it was concentrated under reduced pressure. The resulting residue was further purified by column chromatography to afford solids 10a-10f.

N -(8-hydroxy-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide (10a)
Compound 10a was synthesized as a white solid ($440 \mathrm{mg}, 80 \%$) by treatment of compound 9 a ($700 \mathrm{mg}, 1.64 \mathrm{mmol}$) and trifluoroacetic acid (40 mL) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, ~ D M S O-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.77$ (s, $1 \mathrm{H},-\mathrm{NHCO}-), 9.33$ (s, 1H, H-Py), 8.73 (m, 1H, H-Py), 8.46 (m, 1H, H-Py), 7.54-7.48 (m, 2H, H-Py and H-Ar), 6.84 (m, 1H, H-Ar), 5.31 (s, 1H, HOAr), 4.10 ($\left.\mathrm{m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), \quad 4.07\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), \quad 3.92(\mathrm{~s}, 3 \mathrm{H},-$ OCH_{3}); ${ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}$, DMSO-d6) $\delta(\mathrm{ppm}): 176.1,153.1,149.3,148.3,147.7$, $146.9,136.2,134.8,133.0,131.7,126.2,124.3,112.9,105.6,51.2,46.0,45.2$; ESIMS $m / z: 338.2[\mathrm{M}+\mathrm{H}]^{+}$.

N-(8-hydroxy-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)benzamide (10b) Compound 10b was synthesized as a white solid ($452 \mathrm{mg}, 82 \%$) by treatment of compound 9b ($700 \mathrm{mg}, 1.64 \mathrm{mmol}$) and trifluoroacetic acid (40 mL) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300M, DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm}): 12.90$ (s, $1 \mathrm{H},-\mathrm{NHCO}-), 8.20$ (m, 2H, $H-\mathrm{Ar}$), 7.67 (m, 1H, H-Ar), 7.58 (m, 2H, H-Ar), 7.45 (m, $1 \mathrm{H}, H-\mathrm{Ar}), 6.83(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 5.31(\mathrm{~s}, 1 \mathrm{H}, H \mathrm{OAr}), 4.11\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right)$, $4.06\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO-d6) δ (ppm): 176.1, 153.1, 149.3, 146.9, 134.8, 133.8, 133.0, 132.5, 129.8, 128.9, 124.3,

N -(8-hydroxy-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-6-
methoxynicotinamide (10c)
Compound 10c was synthesized as a white solid ($450 \mathrm{mg}, 78 \%$) by treatment of compound 9c ($720 \mathrm{mg}, 1.57 \mathrm{mmol}$) and trifluoroacetic acid (40 mL) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 M , DMSO- d_{6}) $\delta(\mathrm{ppm}): 12.73$ (s, $1 \mathrm{H},-\mathrm{NHCO}-), 8.23$ (m, 1H, H-Py), 7.92 (m, 1H, H-Py), 7.47 (m, 1H, H-Ar), 7.10 (m, $1 \mathrm{H}, H-\mathrm{Py}), 6.84(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 4.11\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06(\mathrm{~m}, 2 \mathrm{H}$, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}$, DMSO-d6) $\delta(\mathrm{ppm}): 176.1,164.7,153.1,152.1,149.3,146.9,140.3,134.8,133.0$, 124.2, 117.7, 113.9, 112.9, 105.6, 51.2, 50.8, 46.0, 45.2; ESI-MS m/z: $368.2[\mathrm{M}+\mathrm{H}]^{+}$.

dihydroimidazo[1,2-c]quinazolin-5-yl)-4-methoxybenzamide (10d)
Compound 10d was synthesized as a white solid ($450 \mathrm{mg}, 79 \%$) by treatment of compound $9 \mathbf{d}(710 \mathrm{mg}, 1.56 \mathrm{mmol})$ and trifluoroacetic acid (40 mL) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.91$ (s, $1 \mathrm{H},-\mathrm{N} H \mathrm{CO}-), 8.10(\mathrm{~m}, 2 \mathrm{H}, H-\mathrm{Ar}), 7.58$ (m, 2H, $H-\mathrm{Ar}), 7.44$ (m, 1H, $H-\mathrm{Ar}$), 7.14 (m, $1 \mathrm{H}, H-\mathrm{Ar}), 6.83(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 5.31(\mathrm{~s}, 1 \mathrm{H}, H \mathrm{OAr}), 4.11\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right)$, $4.06\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO-d6) $\delta(\mathrm{ppm}): 176.1,165.1,153.0,149.1,146.9,134.9,133.0,126.2$, 125.2, 124.3, 115.7, 113.0, 105.8, 51.3, 51.0 46.0, 45.2; ESI-MS m/z: $367.2[\mathrm{M}+\mathrm{H}]^{+}$.

N-(8-hydroxy-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-3-
methylbenzamide (10e)
Compound 10e was synthesized as a white solid ($420 \mathrm{mg}, 75 \%$) by treatment of compound $9 \mathbf{e}(700 \mathrm{mg}, 1.59 \mathrm{mmol})$ and trifluoroacetic acid (40 mL) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300M, DMSO- d_{6}) $\delta(\mathrm{ppm}): 12.91$ (s, $1 \mathrm{H},-\mathrm{NHCO}-), 7.98(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 7.91$ (m, 1H, H-Ar), 7.45 (m, 1H, H-Ar), 7.32 (m,
$1 \mathrm{H}, H-\mathrm{Ar}), 7.26$ (m, 1H, $H-\mathrm{Ar}$), 6.83 (m, 1H, $H-\mathrm{Ar}$), 5.29 ($\mathrm{s}, 1 \mathrm{H}, H \mathrm{OAr}), 4.11$ (m, 2H, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.46(\mathrm{~s}, 3 \mathrm{H},-$ CH_{3}); ${ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}$, DMSO-d6) $\delta(\mathrm{ppm}): 176.1,153.1,149.3,146.9,139.6,134.9$, 134.7, 133.5, 133.0, 132.3, 129.8, 125.4, 124.3, 113.0, 105.8, 51.3, 46.0, 45.2, 23.1; ESI-MS m/z: $351.2[\mathrm{M}+\mathrm{H}]^{+}$.

N-(8-hydroxy-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-1-methyl-1H-imidazole-5-carboxamide (10f)
Compound $\mathbf{1 0 f}$ was synthesized as a white solid ($410 \mathrm{mg}, 74 \%$) by treatment of compound $9 \mathbf{9}(700 \mathrm{mg}, 1.63 \mathrm{mmol})$ and trifluoroacetic acid $(40 \mathrm{~mL})$ according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300M, DMSO-d ${ }_{6}$) δ (ppm): 12.91 (s, $1 \mathrm{H},-\mathrm{NHCO}$), 8.59 (m, $1 \mathrm{H}, H$-imidazole), $8.01(\mathrm{~m}, 1 \mathrm{H}, H$-imidazole), $7.45(\mathrm{~m}, 1 \mathrm{H}$, H-Ar), $6.84(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 5.35(\mathrm{~s}, 1 \mathrm{H}, H \mathrm{OAr}), 4.11\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06$ ($\mathrm{m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-$), 3.94 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$), 3.89 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{NCH}_{3}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO-d6) $\delta(\mathrm{ppm}): 176.1,153.1,155.6,149.3,146.9,134.8,133.0,132.6$, 132.1, 124.3, 113.1, 105.8, 51.3, 46.0, 45.2, 35.1; ESI-MS m/z: $341.2[\mathrm{M}+\mathrm{H}]^{+}$.

General synthesis of amides of ethyl 6-((7-methoxy-5-amido-2,3-dihydroimidazo [1,2-c]quinazolin-8-yl)oxy)alkanoate (11a-11j)
Compound $\mathbf{1 0}(1 \mathrm{mmol})$ was solubilized in DMF $(8 \mathrm{~mL})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.5 \mathrm{mmol})$ was added. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 0.5 h , then ethyl bromoalkanoate (1.5
mmol) was added. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 2 h , then cooled to the room temperature and poured into 30 mL water. The solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract was concentrated under reduced pressure. The resulting residue was further purified by column chromatography to afford solids.

ethyl 5-((7-methoxy-5-(nicotinamido)-2,3-dihydroimidazo[1,2-c]quinazolin-8-yl)oxy) pentanoate (11a)
Compound 11a was synthesized as a white solid ($177 \mathrm{mg}, 64 \%$) by treatment of compound 10a ($200 \mathrm{mg}, 0.59 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(484 \mathrm{mg}, 1.50 \mathrm{mmol})$ and ethyl 5bromopentanoate ($186 \mathrm{mg}, 0.89 \mathrm{mmol}$) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm}): 12.75(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NHCO}), 9.33(\mathrm{~s}, 1 \mathrm{H}$, H-Py), 8.73 (s, 1H, H-Py), 8.45 (m, 1H, H-Py), 7.62 (m, 1H, H-Рy), 7.53 (m, 1H, HAr), $7.05(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 4.10\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.08(\mathrm{~m}, 2 \mathrm{H}$, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right), 4.04\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.94(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{OCH}_{3}$), $2.29\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{EtOOCCH}_{2}-\right), 1.79\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.66(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right), 1.17\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}\right.$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}$, DMSO-d d_{6}) $\delta(\mathrm{ppm}): 180.3,176.1,157.3,149.1,148.3,146.1,136.2,134.3,133.0$, 131.7, 126.2, 124.0, 112.6, 101.2, 68.4, 61.2, 51.2, 46.0, 45.2, 33.5, 27.9, 22.7, 14.2; ESI-MS m/z: $466.2[\mathrm{M}+\mathrm{H}]^{+}$.

ethyl 6-((7-methoxy-5-(nicotinamido)-2,3-dihydroimidazo[1,2-c]quinazolin-8-yl)oxy) hexanoate (11b)
Compound 11b was synthesized as a white solid ($185 \mathrm{mg}, 65.1 \%$) by treatment of compound 10a ($200 \mathrm{mg}, 0.59 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(484 \mathrm{mg}, 1.50 \mathrm{mmol})$ and ethyl 6bromohexanoate ($200 \mathrm{mg}, 0.89 \mathrm{mmol}$) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.75$ (s, 1H, -NHCO-), $9.33(\mathrm{~s}, 1 \mathrm{H}$, H-Py), 8.73 (s, 1H, H-Py), 8.45 (m, 1H, H-Py), 7.62 (m, 1H, H-Рy), 7.53 (m, 1H, H$\mathrm{Ar}), 7.05(\mathrm{~m}, ~ 1 \mathrm{H}, ~ H-\mathrm{Ar}), 4.10\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.08(\mathrm{~m}, 2 \mathrm{H}$, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right), 4.04\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.94(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{OCH}_{3}$), $2.29\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{EtOOCCH}_{2}-\right), 1.79\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.56(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right), 1.30\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right), 1.17(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm}): 180.3,176.1,157.3,149.1$, $148.3,146.1,136.2,134.3,133.0,131.7,126.2,124.0,112.6,101.2,69.5,61.2,51.2$, 46.0, 45.2, 33.3, 29.6, 25.8, 25.5, 14.2; ESI-MS $m / z: 480.2[\mathrm{M}+\mathrm{H}]^{+}$.

ethyl 7-((7-methoxy-5-(nicotinamido)-2,3-dihydroimidazo[1,2-c]quinazolin-8-yl)oxy) heptanoate (11c)
Compound 11c was synthesized as a white solid ($180 \mathrm{mg}, 62 \%$) by treatment of compound 10a ($200 \mathrm{mg}, 0.59 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(484 \mathrm{mg}, 1.50 \mathrm{mmol})$ and ethyl 7-
bromoheptanoate ($211 \mathrm{mg}, 0.89 \mathrm{mmol}$) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.75$ (s, 1H, -NHCO-), 9.33 (s, 1H, H-Py), 8.73 (s, 1H, H-Py), 8.45 (m, 1H, H-Py), 7.62 (m, 1H, H-Рy), 7.53 (m, 1H, HAr), $7.05(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 4.10\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.08(\mathrm{~m}, 2 \mathrm{H}$, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right), 4.04\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.94(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{OCH}_{3}$), $2.29\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{EtOOCCH}_{2}-\right), 1.78\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.56(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OAr}\right), 1.46\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right), 1.37\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right)$, 1.17 (t, 3H, J=7Hz, CH $\mathrm{CH}_{2} \mathrm{OOC}-$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm}): 180.3$, 176.1, 157.3, 149.1, 148.3, 146.1, 136.2, 134.3, 133.0, 131.7, 126.2, 124.0, 112.6, 101.2, 69.3, 61.2, 51.2, 46.0, 45.2, 33.9, 29.8, 29.0, 25.6, 24.7, 14.2; ESI-MS m/z: $494.2[\mathrm{M}+\mathrm{H}]^{+}$.

ethyl 8-((7-methoxy-5-(nicotinamido)-2,3-dihydroimidazo[1,2-c]quinazolin-8-yl)oxy) octanoate (11d)
Compound 11d was synthesized as a white solid (192mg, 66%) by treatment of compound 10a ($200 \mathrm{mg}, 0.59 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(484 \mathrm{mg}, 1.50 \mathrm{mmol})$ and ethyl 7bromoheptanoate ($211 \mathrm{mg}, 0.89 \mathrm{mmol}$) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}_{6}\right) \delta(\mathrm{ppm}): 12.75(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NHCO}), 9.33(\mathrm{~s}, 1 \mathrm{H}$, H-Py), 8.73 (s, 1H, H-Py), 8.45 (m, 1H, H-Py), 7.62 (m, 1H, H-Рy), 7.53 (m, 1H, HAr), $7.05(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 4.10\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.08(\mathrm{~m}, 2 \mathrm{H}$, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right), 4.04\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.94(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{OCH}_{3}$), $2.29\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{EtOOCCH}_{2}-\right), 1.78\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.57(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OAr}\right), 1.46\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right), 1.37\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OAr}\right)$, 1.27 (m, 2H, $\left.-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right), 1.17$ (t, $\left.3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO- d_{6}) $\delta(\mathrm{ppm}): 180.3,176.1,157.3,149.1,148.3,146.1,136.2,134.3,133.0$, 131.7, 126.2, 124.0, 112.6, 101.2, 69.2, 61.2, 51.1, 46.0, 45.1, 33.9, 29.7, 29.4, 29.0, 26.4, 24.8, 14.2; ESI-MS m/z: 408.2 [M+H] ${ }^{+}$.

ethyl 6-((5-benzamido-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-8-yl)oxy) hexanoate (11e)
Compound 11e was synthesized as a white solid ($190 \mathrm{mg}, 67 \%$) by treatment of compound 10b ($200 \mathrm{mg}, 0.59 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(484 \mathrm{mg}, 1.50 \mathrm{mmol})$ and ethyl 6bromohexanoate ($200 \mathrm{mg}, 0.89 \mathrm{mmol}$) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.90(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NHCO}-), 8.20(\mathrm{~m}, 2 \mathrm{H}$,
H-Ar), 7.67 (m, 1H, H-Ar), 7.58 (m, 2H, H-Ar), 7.51 (m, 1H, H-Ar), 7.06 (m, 1H, $H-$ $\mathrm{Ar}), 4.11\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.08\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right), 4.04\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.29(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}$, $\mathrm{EtOOCCH}_{2}$-), $1.79\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.61\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right), 1.48(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right), 1.17\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO$\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 180.3,173.6,157.3,149.0,146.1,134.3,134.0,133.0,132.5,129.8$, $128.6,124.0,112.6,101.2,69.5,61.2,51.2,46.0,45.2,33.8,29.9,25.5,25.1,14.2$; ESI-MS m/z: $479.2[\mathrm{M}+\mathrm{H}]^{+}$.

ethyl 7-((5-benzamido-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-8-yl)oxy) heptanoate (11f)
Compound 11f was synthesized as a white solid ($180 \mathrm{mg}, 61.5 \%$) by treatment of compound 10b ($200 \mathrm{mg}, 0.59 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(484 \mathrm{mg}, 1.50 \mathrm{mmol})$ and ethyl 7bromoheptanoate ($212 \mathrm{mg}, 0.89 \mathrm{mmol}$) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right) ~ \delta(\mathrm{ppm}): 12.90(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NHCO}-), 8.20(\mathrm{~m}, 2 \mathrm{H}$, H-Ar), 7.67 (m, 1H, H-Ar), 7.58 (m, 2H, $H-\mathrm{Ar}$), 7.51 (m, 1H, $H-\mathrm{Ar}$), 7.06 (m, 1H, HAr), $4.11\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.08\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right), 4.04\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.29(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}$, EtOOCCH ${ }_{2}$-), $1.78\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.56\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OAr}\right), 1.46(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right), 1.37\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right), 1.17(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm}): 180.3,173.6,157.3,149.0$, 146.1, 134.3, 134.0, 133.0, 132.5, 129.8, 128.6, 124.0, 112.6, 101.2, 69.3, 61.2, 51.2, 46.0, 45.2, 34.2, 29.7, 29.0, 25.5, 25.0, 14.2; ESI-MS m/z: $493.3[\mathrm{M}+\mathrm{H}]^{+}$.

ethyl 6-((7-methoxy-5-(6-methoxynicotinamido)-2,3-dihydroimidazo[1,2-c]
quinazolin-8-yl)oxy)hexanoate ($\mathbf{1 1 g}$)
Compound $\mathbf{1 1 g}$ was synthesized as a white solid ($170 \mathrm{mg}, 61 \%$) by treatment of compound 10c ($200 \mathrm{mg}, 0.54 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(443 \mathrm{mg}, 1.40 \mathrm{mmol})$ and ethyl 6bromohexanoate ($182 \mathrm{mg}, 0.82 \mathrm{mmol}$) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right) ~ \delta(\mathrm{ppm}): 12.78(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NHCO}), 9.02(\mathrm{~m}, 1 \mathrm{H}$, H-Py), 8.40 (m, 1H, H-Py), 7.59 (m, 1H, H-Ar), 7.08 (m, 1H, H-Py), 6.88 (m, 1H, H Ar), $4.11\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.08\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right), 4.04$ (m, 2H, $-\mathrm{CH}_{2} \mathrm{OAr}$), 3.93 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$), 3.92 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$), 2.33 (t, 2H, J=7.0Hz, EtOOCCH ${ }_{2}-$), $1.79\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.62(\mathrm{~m}, 2 \mathrm{H}$, -
$\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right), 1.48\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right), 1.17\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{M}\right.$, DMSO-d $\left._{6}\right) \delta(\mathrm{ppm}): 180.3,176.1,164.6,157.3,152.1,149.1,146.1$, $140.3,134.3,133.0,124.0,117.7,113.9,112.6,101.2,69.5,61.2,51.2,50.8,46.0$, $45.2,33.9,30.1,25.3,24.9,14.2$; ESI-MS $m / z: 510.2[\mathrm{M}+\mathrm{H}]^{+}$.

ethyl 6-((7-methoxy-5-(4-methoxybenzamido)-2,3-dihydroimidazo[1,2-c]quinazolin8 -yl)oxy)hexanoate (11h)
Compound 11h was synthesized as a white solid ($170 \mathrm{mg}, 59 \%$) by treatment of compound $10 \mathrm{~d}(210 \mathrm{mg}, 0.57 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(465 \mathrm{mg}, 1.43 \mathrm{mmol})$ and ethyl 6bromohexanoate ($191 \mathrm{mg}, 0.86 \mathrm{mmol}$) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.90(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NHCO}-), 8.16(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, H-\mathrm{Ar}), 7.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9 \mathrm{~Hz}, H-\mathrm{Ar}), 7.02(\mathrm{~m}, 3 \mathrm{H}, H-\mathrm{Ar}), 4.10(\mathrm{~m}, 2 \mathrm{H}$, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.08\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right), 4.04$ ($\mathrm{m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}$), $3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.29\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{EtOOCCH}_{2}\right.$), $1.78(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.46\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right), 1.37\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right)$, 1.17 (t, $3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 180.2$, 176.1, 165.2, 157.3, 149.1, 146.1, 134.3, 133.0, 126.2, 125.2, 124.0, 115.7, 112.6, $101.2,69.5,61.2,51.2,51.0,46.0,45.2,33.9,30.0,25.3,24.9,14.2$; ESI-MS m / z : $509.2[\mathrm{M}+\mathrm{H}]^{+}$.

ethyl 6-((7-methoxy-5-(3-methylbenzamido)-2,3-dihydroimidazo[1,2-c]quinazolin-8yl)oxy)hexanoate (11i)
Compound 11i was synthesized as a white solid ($170 \mathrm{mg}, 60 \%$) by treatment of compound 10e ($200 \mathrm{mg}, 0.57 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(465 \mathrm{mg}, 1.43 \mathrm{mmol})$ and ethyl 6bromohexanoate ($191 \mathrm{mg}, 0.86 \mathrm{mmol}$) according to above-mentioned general procedure; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, ~ D M S O-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.89(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NHCO}), 8.01(\mathrm{~m}$, $2 \mathrm{H}, \quad H-\mathrm{Ar}), 7.58(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 7.36(\mathrm{~m}, 2 \mathrm{H}, H-\mathrm{Ar}), 7.01(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 4.11(\mathrm{~m}$, $\left.2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.09$ (m, 2H, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06$ (m, 2H, CH $\mathrm{CH}_{2} \mathrm{OOC}-$), $4.04\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.32(\mathrm{t}, 2 \mathrm{H}$, $\left.J=7.0 \mathrm{~Hz}, \mathrm{EtOOCCH}_{2}-\right), 1.78\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.62\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right)$, $1.48\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right), 1.17\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm}): 180.3,176.1,157.3,149.1,146.1,139.6,134.9,134.3$, $133.5,133.0,132.3,129.8,125.4,124.0,112.6,101.2,69.5,61.3,51.2,46.0,45.2$, 34.0, 30.1, 25.3, 24.9, 22.9, 14.2; ESI-MS m/z: $493.2[\mathrm{M}+\mathrm{H}]^{+}$.

ethyl 6-((7-methoxy-5-(1-methyl-1H-imidazole-2-carboxamido)-2,3-dihydroimidazo [1,2-c]quinazolin-8-yl)oxy)hexanoate (11j)
Compound 11j was synthesized as a white solid ($180 \mathrm{mg}, 63 \%$) by treatment of compound 10e ($200 \mathrm{mg}, 0.59 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(479 \mathrm{mg}, 1.47 \mathrm{mmol})$ and ethyl 6bromohexanoate ($197 \mathrm{mg}, 0.88 \mathrm{mmol}$) according to above-mentioned general procedure. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}_{\mathrm{d}}^{6}\right) ~ \delta(\mathrm{ppm}): 12.53(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NHCO}-), 7.78(\mathrm{~m}, 1 \mathrm{H}$, H-imidazole), 7.67 (m, $1 \mathrm{H}, H$-imidazole), 7.57 (d, $1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, H$-Ar), 7.02 (d, 1 H , $\mathrm{J}=9.0 \mathrm{~Hz}, H-\mathrm{Ar}), 4.09\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06\left(\mathrm{~m}, 4 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\mathrm{and}\right.$ $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-\right), 4.02\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.92\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right)$, 2.32 (t, 2H, $J=7.0 \mathrm{~Hz}, \mathrm{EtOOCCH}_{2}$-), 1.77 (m, 2H, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}$), 1.62 (m, 2H, $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right), \quad 1.48\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right), 1.17 \quad(\mathrm{t}, 3 \mathrm{H}, \quad \mathrm{J}=7.0 \mathrm{~Hz}$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OOC}-$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm}): 180.3,176.1,157.3,155.4$ 149.1, 146.1, 134.3, 133.0, 132.5, 131.9, 124.0, 112.6, 101.2, 69.5, 61.3, 51.2, 46.0, 45.2, 35.6, 33.9, 30.1, 25.3, 24.9, 14.2; ESI-MS m/z: $483.2[\mathrm{M}+\mathrm{H}]^{+}$.

General synthesis of amides of N-(8-(hydroxyaminooxoalkanyl)oxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide (12a-12j)
$\mathrm{KOH}(15 \mathrm{mmol})$ was added to a solution of hydroxyamine hydrochloride (10 mmol) in methanol (15 mL) cooled by an ice bath. The mixture was stirred for another 1 h . The resulting precipitate was filtered off, and the solution of free hydroxylamine was prepared. The above freshly prepared hydroxyamine solution was placed in a round bottom flask cooled by an ice bath and compound 11 (1 mmol) was added to the solution. After the mixture was stirred over night at the room temperature, water (25 mL) and AcOH were added to adjust pH to $4-5$. The solution was keeping in a refrigerator for 3 h . The precipitate was collected by filtration, washed with water, then crystallized from acetone/THF to afford the white solids.

N-(8-((5-(hydroxyamino)-5-oxopentyl)oxy)-7-methoxy-2,3-dihydroimidazo[1,2-
c]quinazolin-5-yl)nicotinamide (12a)
Compound 12a was synthesized as a white solid ($77 \mathrm{mg}, 53 \%$) by treatment of compound 11a ($150 \mathrm{mg}, 0.32 \mathrm{mmol}$), hydroxyamine hydrochloride ($224 \mathrm{mg}, 3.22$ mmol) and KOH ($271 \mathrm{mg}, 4.83 \mathrm{mmol}$) according to above-mentioned general procedure; mp: 204~206 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.83$ (s, $1 \mathrm{H},-$ NHCO-), 10.26 (s, 1H, HONH-), 9.25 (s, 1H, H-Py), 8.76 (m, 1H, H-Py), 8.56 (s, 1H, HONH-), 8.37 (m, 1H, H-Py), 7.59 (m, 1H, H-Py), 7.45 (m, 1H, H-Ar), 7.04 (m, 1H, H-Ar), 4.07 (m, 2H, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.05\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.01(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{OAr}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.98\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{HONHCOCH}_{2}\right.$), $1.82(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.58\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ (ppm): 177.2, 176.1, 157.3, 149.1, 148.3, 146.1, 136.2, 134.3, 133.0, 131.7, 126.2, 124.0, 112.6, 101.2, 68.1, 51.2, 46.0, 45.2, 33.3, 27.8, 22.7; HRMS (ESI): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 475.1700, found: 475.1723.

N-(8-((6-(hydroxyamino)-6-oxohexyl)oxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide (12b)
Compound 12b was synthesized as a white solid ($73 \mathrm{mg}, 50 \%$) by treatment of compound 11b ($150 \mathrm{mg}, 0.31 \mathrm{mmol}$), hydroxyamine hydrochloride ($217 \mathrm{mg}, 3.13$ mmol) and KOH ($263 \mathrm{mg}, 4.69 \mathrm{mmol}$) according to above-mentioned general procedure; mp: 238~240 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.82$ (s, 1H, -NHCO-), 10.26 (s, 1H, HONH-), 9.24 (s, 1H, H-Py), 8.76 (m, 1H, H-Py), 8.56 (s, 1H, HONH-), 8.36 (m, 1H, H-Py), 7.58 (m, 1H, H-Py), 7.45 (m, 1H, H-Ar), 7.04 (m, 1H, H-Ar), 4.07 (m, 2H, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.04\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.01(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{OAr}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.99\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{HONHCOCH}_{2}-\right), 1.79(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.58\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right), 1.44\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{M}\right.$, DMSO-d $\left._{6}\right) \delta(\mathrm{ppm}): 177.2,176.1,157.3,149.1,148.3,146.1,136.2$, 134.3, 133.0, 131.7, 126.2, 124.0, 112.6, 101.2, 69.5, 51.2, 46.0, 45.2, 32.9, 29.6, 25.8, 24.7; HRMS (ESI): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 489.1857, found: 489.1883.

N-(8-((7-(hydroxyamino)-7-oxoheptyl)oxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide (12c)

Compound 12c was synthesized as a white solid ($75 \mathrm{mg}, 51 \%$) by treatment of compound 11c ($150 \mathrm{mg}, 0.30 \mathrm{mmol}$), hydroxyamine hydrochloride ($211 \mathrm{mg}, 3.04$ mmol) and $\mathrm{KOH}(256 \mathrm{mg}, 4.56 \mathrm{mmol})$ according to above-mentioned general procedure; mp: 209~211 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.73$ (s, 1 H , -NHCO-), 10.30 (s, 1H, HONH-), 9.32 (s, 1H, H-Py), $8.72(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Py}), 8.61(\mathrm{~s}, 1 \mathrm{H}$, HONH-), 8.45 (m, 1H, H-Py), 7.59 (m, 1H, H-Py), $7.51(\mathrm{~m}, 1 \mathrm{H}, H$-Ar), 7.04 (m, 1H, $H-\mathrm{Ar}), 4.11\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.09\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.04(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{OAr}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.96\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{HONHCOCH}_{2}\right.$) , $1.77(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.54\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OAr}\right), 1.49\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right)$, 1.34 (m, 2H, $\left.-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 177.2,176.1$, 157.3, 149.1, 148.3, 146.1, 136.2, 134.3, 133.0, 131.7, 126.2, 124.0, 112.6, 101.2, 69.3, 51.2, 46.0, 45.2, 33.6, 29.7, 28.7, 25.8, 25.1; HRMS (ESI): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 503.2013, found: 503.2035.

N-(8-((8-(hydroxyamino)-8-oxooctyl)oxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)nicotinamide (12d)
Compound 12d was synthesized as a white solid ($74 \mathrm{mg}, 51 \%$) by treatment of compound 11d ($150 \mathrm{mg}, 0.30 \mathrm{mmol}$), hydroxyamine hydrochloride ($205 \mathrm{mg}, 2.96$ mmol) and KOH ($249 \mathrm{mg}, 4.43 \mathrm{mmol}$) according to above-mentioned general procedure; mp: 236~238 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.70(\mathrm{~s}, 1 \mathrm{H},-$ NHCO-), 10.29 (s, 1H, HONH-), 9.32 (s, 1H, H-Py), 8.72 (m, 1H, H-Py), 8.60 (s, 1H, HONH-), 8.45 (m, 1H, H-Py), 7.59 (m, 1H, H-Py), 7.51 (m, 1H, H-Ar), 7.04 (m, 1H, $H-\mathrm{Ar}), 4.11\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.09\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.04(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{OAr}\right), 3.94\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.98\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{HONHCOCH}_{2}\right.$) , $1.79(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.55\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OAr}\right), 1.49\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right)$, 1.34-1.30 (m, 4H, $-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OAr}$ and $\left.-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO$\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 177.2,176.1,157.3,149.1,148.3,146.1,136.2,134.3,133.0,131.7$, 126.2, 124.0, 112.6, 101.2, 69.2, 51.1, 46.0, 45.1, 33.5, 29.7, 29.3, 28.8, 26.3, 25.2; HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 517.2170, found: 517.2187.

N-(8-((6-(hydroxyamino)-6-oxohexyl)oxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)benzamide (12e)

Compound 12e was synthesized as a white solid ($79 \mathrm{mg}, 54 \%$) by treatment of compound 11e ($150 \mathrm{mg}, 0.31 \mathrm{mmol}$), hydroxyamine hydrochloride ($218 \mathrm{mg}, 3.13$ mmol) and $\mathrm{KOH}(264 \mathrm{mg}, 4.70 \mathrm{mmol})$ according to above-mentioned general procedure; mp: 233~234 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.89$ (s, 1H, -NHCO-), 10.35 (s, 1H, HONH-), 8.66 (s, 1H, HONH-), 8.21 (d, 2H, $J=7.0 \mathrm{~Hz}, H-$ Ar), 7.60 (m, $1 \mathrm{H}, H-\mathrm{Ar}$), 7.55 (d, 1H, $J=7.0 \mathrm{~Hz}, H-\mathrm{Ar}$), 7.49 (m, 1H, H-Ar), 7.45 (s, $1 \mathrm{H}, H-\mathrm{Ar}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, H-\mathrm{Ar}), 4.12\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.09 \quad(\mathrm{~m}$, $\left.2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), \quad 4.04\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), \quad 3.93\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), \quad 1.99(\mathrm{t}, 2 \mathrm{H}$, $J=7.0 \mathrm{~Hz}, \mathrm{HONHCOCH} \mathrm{H}^{-}$), $1.79\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right)$, $1.58(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right), 1.44\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO-d ${ }_{6}$) δ (ppm): 177.1, 173.6, 157.3, 149.0, 146.1, 134.3, 134.0, 133.0, 132.5, 129.8, 128.6, 124.0, 112.6, 101.2, 69.5, 51.2, 46.0, 45.2, 32.9, 29.6, 25.8, 24.7; HRMS (ESI): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 488.1904, found: 488.1927.

N-(8-((7-(hydroxyamino)-7-oxoheptyl)oxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)benzamide (12f)
Compound 12f was synthesized as a white solid ($74 \mathrm{mg}, 51 \%$) by treatment of compound 11f ($150 \mathrm{mg}, 0.30 \mathrm{mmol}$), hydroxyamine hydrochloride ($212 \mathrm{mg}, 3.05$ mmol) and KOH ($256 \mathrm{mg}, 4.56 \mathrm{mmol}$) according to above-mentioned general procedure; mp: 199~202 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, ~ D M S O-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.81(\mathrm{~s}, 1 \mathrm{H},-$ NHCO-), 10.36 (s, 1H, HONH-), 8.21 (s, 1H, HONH-), 8.18 (s, 1H, H-Ar), 7.57 (m, 2H, H-Ar), 7.51 (m, 2H, H-Ar), 7.46 (m, 1H, H-Ar), 7.00 (m, 1H, $H-A r$), 4.08 (m, 2H, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.01\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.93(\mathrm{~s}$, $\left.3 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.96\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{HONHCOCH} \mathrm{H}_{2}\right), 1.76\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right)$, $1.50\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OAr}\right), 1.44\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right), 1.34(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 177.1,173.6,157.3,149.0$, 146.1, 134.3, 134.0, 133.0, 132.5, 129.8, 128.6, 124.0, 112.6, 101.2, 69.3, 51.2, 46.0, 45.2, 33.6, 29.7, 28.7, 25.7, 25.0; HRMS (ESI): m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}^{+}(\mathrm{M}+$ Na^{+}): 502.2061, found: 502.2086.

N-(8-((6-(hydroxyamino)-6-oxohexyl)oxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-6-methoxynicotinamide (12g)

Compound $\mathbf{1 2 g}$ was synthesized as a white solid ($74 \mathrm{mg}, 51 \%$) by treatment of compound $\mathbf{1 1 g}$ ($150 \mathrm{mg}, 0.29 \mathrm{mmol}$), hydroxyamine hydrochloride ($205 \mathrm{mg}, 2.94$ mmol) and $\mathrm{KOH}(248 \mathrm{mg}, 4.42 \mathrm{mmol})$ according to above-mentioned general procedure. mp: 230~233 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.74(\mathrm{~s}, 1 \mathrm{H},-$ NHCO-), 10.35 (s, 1H, HONH-), 8.97 (s, 1H, H-Py), 8.67 (s, 1H, HONH-), 8.35 (d, $1 \mathrm{H}, J=7.0 \mathrm{~Hz}, H$-Py), $7.57(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, H-\mathrm{Ar}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, H-\mathrm{Ar})$, $6.86(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, H-\mathrm{Py}), 4.10\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.08(\mathrm{~m}, 2 \mathrm{H}$, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.06\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.92\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.99(\mathrm{t}, 2 \mathrm{H}, J=7.0$ $\left.\mathrm{Hz}, \mathrm{HONHCOCH} \mathrm{H}_{2}\right), 1.78\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.58\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right)$, $1.44\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 177.2,176.1$, 164.6, 157.3, 152.1, 149.1, 146.1, 140.3, 134.3, 133.0, 124.0, 117.7, 113.9, 112.6, 101.2, 69.5, 51.2, 50.8, 46.0, 45.2, 32.9, 29.6, 25.8, 24.7; HRMS (ESI): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 519.1963$, found: 519.1981.

N-(8-((6-(hydroxyamino)-6-oxohexyl)oxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-4-methoxybenzamide (12h)
Compound 12h was synthesized as a white solid ($70 \mathrm{mg}, 48 \%$) by treatment of compound $\mathbf{1 1 g}(150 \mathrm{mg}, 0.29 \mathrm{mmol})$, hydroxyamine hydrochloride ($205 \mathrm{mg}, 2.94$ mmol) and $\mathrm{KOH}(248 \mathrm{mg}, 4.42 \mathrm{mmol})$ according to above-mentioned general procedure; mp: 229~231 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.97(\mathrm{~s}, 1 \mathrm{H},-$ NHCO-), 10.35 (s, 1H, HONH-), 8.68 (s, 1H, HONH-), 8.19 (m, 2H, H-Ar), 7.57 (m, $1 \mathrm{H}, H-\mathrm{Ar}), 7.03(\mathrm{~m}, \quad 3 \mathrm{H}, \quad H-\mathrm{Ar}), 4.13\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.10(\mathrm{~m}, 2 \mathrm{H}$, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.07\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.92\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.83(\mathrm{~s}, 3 \mathrm{H},-$ OCH_{3}), $1.99\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{HONHCOCH}_{2}-\right), 1.79\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.58$ (m, 2H, $\left.-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right), 1.44\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (300M, DMSO$\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 177.2,176.1,165.2,157.3,149.1,146.1,134.3,133.0,126.2,125.2$, 124.0, 115.7, 112.6, 101.2, 69.5, 51.2, 51.0, 46.0, 45.2, 32.9, 29.6, 25.8, 24.7; HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right): 518.2010$, found: 518.2033.

N-(8-((6-(hydroxyamino)-6-oxohexyl)oxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-3-methylbenzamide (12i)
Compound 12i was synthesized as a white solid ($67 \mathrm{mg}, 46 \%$) by treatment of compound 11i ($150 \mathrm{mg}, 0.31 \mathrm{mmol}$), hydroxyamine hydrochloride ($212 \mathrm{mg}, 3.05$
mmol) and KOH ($257 \mathrm{mg}, 4.58 \mathrm{mmol}$) according to above-mentioned general procedure; mp: 230~231 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 M , DMSO- d_{6}) $\delta(\mathrm{ppm}): 12.92(\mathrm{~s}, 1 \mathrm{H},-$ NHCO-), 10.35 (s, 1H, HONH-), 8.62 (s, 1H, HONH-), 7.95 (m, 2H, H-Ar), 7.57 (m, $1 \mathrm{H}, H-\mathrm{Ar}), 7.33$ (m, 2H, H-Ar), 7.04 (m, $1 \mathrm{H}, H-\mathrm{Ar}$), 4.11 (m, 2H, $=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-$), $4.09\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.04\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.36$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), $1.99\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{HONHCOCH} 2_{2}\right), 1.79\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right)$, $1.58\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right), 1.44\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(300 \mathrm{M}$, DMSO- d_{6}) $\delta(\mathrm{ppm}): 177.2,176.1,157.3,149.1,146.1,139.6,134.9,134.3,133.5$, 133.0, 132.3, 129.8, 125.4, 124.0, 112.6, 101.2, 69.5, 51.2, 46.0, 45.2, 32.9, 29.6, 25.8, 24.7, 22.8; HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 502.2061, found: 502.2090.

N-(8-((6-(hydroxyamino)-6-oxohexyl)oxy)-7-methoxy-2,3-dihydroimidazo[1,2-c]quinazolin-5-yl)-1-methyl-1H-imidazole-2-carboxamide (12j)
Compound $\mathbf{1 2 j}$ was synthesized as a white solid ($74 \mathrm{mg}, 51 \%$) by treatment of compound $\mathbf{1 1 j}$ ($150 \mathrm{mg}, 0.31 \mathrm{mmol}$), hydroxyamine hydrochloride ($216 \mathrm{mg}, 3.11$ mmol) and $\mathrm{KOH}(262 \mathrm{mg}, 4.66 \mathrm{mmol})$ according to above-mentioned general procedure; mp: 237~239 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{M}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 12.58(\mathrm{~s}, 1 \mathrm{H},-$ NHCO-), 10.33 (s, 1H, HONH-), 8.67 (s, 1H, HONH-), 7.74 (s, $1 \mathrm{H}, H$-imidazole), $7.62(\mathrm{~s}, 1 \mathrm{H}, H$-imidazole), $7.57(\mathrm{~m}, 1 \mathrm{H}, H$-Ar), $7.02(\mathrm{~m}, 1 \mathrm{H}, H-\mathrm{Ar}), 4.12 \quad(\mathrm{~m}, 2 \mathrm{H}$, $\left.=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.09\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\right), 4.03\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OAr}\right), 3.92(\mathrm{~s}, 3 \mathrm{H}$, $-\mathrm{OCH}_{3}$), $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH} 3\right.$), $1.99\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{HONHCOCH}_{2}\right.$), $1.79(\mathrm{~m}, 2 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.58\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{OAr}\right), 1.44\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OAr}\right) ;{ }^{13} \mathrm{C}-$ NMR (300M, DMSO- d_{6}) $\delta(\mathrm{ppm}): 177.2,176.1,157.3,155.4$ 149.1, 146.1, 134.3, 133.0, 132.5, 131.9, 124.0, 112.6, 101.2, 69.5, 51.2, 46.0, 45.2, 35.6, 32.9, 29.6, 25.8, 24.7; HRMS (ESI): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{5} \mathrm{Na}^{+}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 492.1966, found: 492.1985.

HPLC Spectra for Compound Purity

Peak	Ret.Tim	Typ	Width	Area	Height	Area
$\#$	$[\mathrm{~min}]$		$[\mathrm{min}]$	$[\mathrm{mAu} * \mathrm{~S}]$	$[\mathrm{mAu}]$	$\%$
1	4.296	BB	0.2100	69.81802	4.49954	0.2465
2	5.624	BV	0.2388	58.91901	3.27656	0.2081
3	7.224	BV	0.4073	57.47442	2.00003	0.2030
4	8.040	VB	0.3533	2.81329 e 4	1218.82629	99.3425

Peak	Ret.Tim	Typ	Width	Area	Height	Area
$\#$	$[\mathrm{~min}]$		$[\mathrm{min}]$	$[\mathrm{mAu}$ S $]$	$[\mathrm{mAu}]$	$\%$
1	4.887	BB	0.1378	26.39076	2.96531	0.0655
2	6.442	BV	0.4404	109.66405	3.86052	0.2723
3	7.198	VV	0.3931	198.54131	6.82978	0.4931
4	8.192	VB	0.3244	3.97271 e 4	1815.08704	98.6596
5	11.243	BB	0.4155	205.13512	7.75684	0.5094

Peak	Ret.Tim	Typ	Width	Area	Height	Area
$\#$	$[\mathrm{~min}]$		$[\mathrm{min}]$	$\left[\mathrm{mAu}^{*} \mathrm{~S}\right]$	$[\mathrm{mAu}]$	$\%$
1	4.246	BV	0.1809	53.18676	4.22265	0.1958
2	5.650	BV	0.2838	67.62865	3.08424	0.2490
3	6.188	VB	0.2942	54.22522	2.60091	0.1997
4	7.792	BV	0.5257	167.58337	4.23484	0.6170
5	8.787	VB	0.5093	2.65838 e 4	786.58221	97.8791
6	16.556	BB	0.8734	233.40318	3.69768	0.8594

Peak	Ret.Tim $\#$	Typ	Width	Area	Height	Area
$[\mathrm{min}]$		$[\mathrm{min}]$	$[\mathrm{mAu} * \mathrm{~S}]$	$[\mathrm{mAu}]$	$\%$	
1	4.249	BB	0.1466	30.80868	3.05733	0.1082
2	5.701	BV	0.3341	69.87434	2.91066	0.2453
3	7.079	VV	0.4974	259.56967	7.05229	0.9113
4	8.170	VB	0.4253	2.81235 e 4	987.23633	98.7352

Peak \#	Ret.Tim [min]	Typ	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAu} * \mathrm{~S}]} \end{gathered}$	Height [mAu]	Area \%
1	4.244	BV	0.2160	38.16593	2.54395	0.0885
2	5.645	BV	0.2967	73.59514	3.20795	0.1707
3	6.244	VB	0.2717	102.62791	5.55030	0.2381
4	7.389	BV	0.3418	64.35471	2.61755	0.1493
5	8.775	BB	0.3951	4.26463 e 4	1625.21814	98.9437
6	14.515	BB	0.6016	176.55275	4.18146	0.4096

Peak	Ret.Tim	Typ	Width	Area	Height	Area
$\#$	$[\mathrm{~min}]$		$[\mathrm{min}]$	$\left[\mathrm{mAu}^{*}\right]$	$[\mathrm{mAu}]$	$\%$
1	4.252	BV	0.1687	38.65522	3.25080	0.1356
2	5.694	BV	0.3542	67.14887	2.81580	0.2356
3	7.017	VV	0.5236	288.29681	7.33462	1.0116
4	8.002	VB	0.3906	2.81055 e 4	1079.92395	98.6172

Peak	Ret.Tim	Typ	Width	Area	Height	Area
$\#$	$[\mathrm{~min}]$		$[\mathrm{min}]$	$\left[\mathrm{mAu}^{*} \mathrm{~S}\right]$	$[\mathrm{mAu}]$	$\%$
1	4.373	BV	0.1745	88.97709	7.33456	0.3396
2	5.611	BB	0.3427	95.57246	3.65921	0.3647
3	7.406	BV	0.4627	638.52753	19.98843	2.4369
4	8.509	VB	0.4278	2.50505 e 4	896.95276	95.6038
5	11.806	BB	0.8710	121.95226	1.83100	0.4654
6	13.466	BB	1.0061	206.87315	2.89015	0.7895

Peak	Ret.Tim	Typ	Width	Area	Height	Area
$\#$	$[\mathrm{~min}]$		$[\mathrm{min}]$	$[\mathrm{mAu} * \mathrm{~S}]$	$[\mathrm{mAu}]$	$\%$
1	6.927	BV	0.2496	69.57221	4.08734	0.2426
2	7.652	VB	0.8726	484.20282	7.88281	1.6885
3	9.104	BV	0.3599	51.12120	1.87037	0.1783
4	10.578	VB	0.3310	2.80125 e 4	1223.81970	97.6857
5	14.850	BB	0.3927	58.76385	2.31103	0.2049

