Supporting Information

Bimetallic zeolitic imidazolate frameworks-derived porous carbon-based materials with efficient synergistic microwave absorption properties: role of calcining temperature

Suyun Wang^a, Xiang Ke^a, Suting Zhong^a, Yaru Lai^a, Danlin Qian^a, Yanping Wang^a,

Qinghua Wang^b, Wei Jiang*a

^a National Special Superfine Powder Engineering Technology Research Center,

Nanjing University of Science and Technology, 210094, Nanjing, China.

* Corresponding author E-mail: superfine_jw@126.com; Tel: +86-025-8431-5942.

^b Military Representative Office 763, 030008, Taiyuan, China.

Figure S1. The EDX results of elements weight content in Co@pNGC-600, Co@pNGC-700 and Co@pNGC-800.

Figure S2. Nitrogen adsorption and desorption isotherms of Co@pNGC-600, Co@pNGC-700 and Co@pNGC-800.

Table S1. The values of saturation magnetization (M_s) , coercivity (H_c) and remant magnetization

(*M_r*) for Co@pNGC-600, Co@pNGC- and Co@pNGC-800

Samples	M_s (emu/g)	$H_c(\text{Oe})$	$M_r (\text{emu/g})$
Co@pNGC-600	20	48.7	1.8
Co@pNGC-700	33.5	200.7	6.7
Co@pNGC-800	35	136.3	5.6

Figure S3. Reflection loss curves of (a) Co@pNGC-600, (b) Co@pNGC-700 with the thickness of 1 - 1.9 mm in the frequency range of 2 - 18 GHz.