Supplementary Information

## Elastomers Built up through $\pi$ - $\pi$ Stacking Association of Polycyclic Planar Aromatic Diimides

Yuji Higaki,<sup>a,b,c</sup> Yudai Kiyoshima,<sup>c</sup> Ken Suzuki,<sup>c</sup> Hirofumi Kabayama,<sup>c</sup> Noboru Ohta,<sup>e</sup> Yongsok Seo,<sup>a,d</sup> Atsushi Takahara<sup>a,b,c\*</sup>

- <sup>a</sup> Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- <sup>b</sup> International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- <sup>c</sup> Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- <sup>d</sup> Intellectual Textile Research Center and RIAM School of Materials Science and Engineering, Seoul National University, Shillim9dong 56-1, Kwanakku, Seoul, Republic of Korea
- <sup>e</sup> Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

### **Table of Contents**

| 1. | <sup>1</sup> H NMR spectra of the copolymers                                                          | 2 |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------|---|--|--|--|--|
| 2. | Structural parameters obtained by curve fitting of the SAXS intensity profile on the basis of pseudo- |   |  |  |  |  |
|    | two-phase model                                                                                       |   |  |  |  |  |
| 3. | Arrhenius plots for relaxations in the DMA data of the copolymer films and calculated activation      |   |  |  |  |  |
|    | energies                                                                                              | 4 |  |  |  |  |
| 4. | Stress-strain curve for the PI2000-P films                                                            | 5 |  |  |  |  |
| 5. | Thermogravimetric analysis data and appearance of the residues after TGA                              | 6 |  |  |  |  |

## 1. <sup>1</sup>H NMR spectra of the copolymers



Figure S1. <sup>1</sup>H NMR spectra of the copolymers (a) PI400-N, and (b) PI2000-P.

# 2. Structural parameters obtained by curve fitting of the SAXS intensity profile on the basis of pseudo-two-phase model

**Table S1**. Structural parameters obtained by curve fitting of the SAXS intensity profile for PI2000-P film

 on the basis of pseudo-two-phase model

| L / Å | $L_1$ / Å | $\Delta$ / Å | $\sigma_{L1}$ / Å | σ/Å  |
|-------|-----------|--------------|-------------------|------|
| 50.8  | 11.0      | 0.87         | 0.02              | 0.05 |

In order to verify the thickness of each lamella phase, the SAXS intensity profile of PI2000-P film was fitted with calculated intensity profile on the basis of the pseudo-two-phase model. In the pseudo-two-phase model, the density changes sigmoidally at the interface, which is given by the one-dimensional convolution product of a step function for an ideal two-phase model and a Gaussian smoothing function [1].

L : long spacing of the lamellar structure

 $L_1$ : lamellar thickness of high density phase

 $\Delta$  : standard deviation of the long period L

 $\sigma$ : a parameter that is relate to the interface thickness t by the equation  $t = (2\pi)^{1/2}/\sigma$ 

[1] R. Ishige, T. Ishii, M. Tokita, M. Koga, S. Kang, J. Watanabe. Macromolecules 2011, 44, 4586-4588.

3. Arrhenius plots for relaxations in the DMA data of the copolymer films and calculated activation energies



**Figure S2**. Arrhenius plots for relaxations in the DMA data of the copolymer films (a) PI400-N and (b) PI2000-P. The filled circles are data for the 1<sup>st</sup> peak, and the open circles are data for the 2<sup>nd</sup> peak in DMA profiles.

**Table S2**. Activation energies of the first and second relaxations observed in dynamic loss modulus in

 DMA calculated from the Arrhenius plots

| PI40                                     | 0-N <sup>a</sup>                         | PI2000-P <sup>b</sup>                    |                                          |  |
|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|--|
| $\Delta H_{1st}$ (kJ mol <sup>-1</sup> ) | $\Delta H_{2nd}$ (kJ mol <sup>-1</sup> ) | $\Delta H_{1st}$ (kJ mol <sup>-1</sup> ) | $\Delta H_{2nd}$ (kJ mol <sup>-1</sup> ) |  |
| 36.4                                     | 249.4                                    | 22.8                                     | 153.2                                    |  |

<sup>*a*</sup>Determined from Arrhenius plots for relaxations found in dynamic loss modulus at 158 K (1<sup>st</sup> peak, 110 Hz) and 297 K (2<sup>nd</sup> peak, 110 Hz). <sup>*b*</sup>Determined from Arrhenius plots for relaxations found in dynamic loss modulus at 157 K (1<sup>st</sup> peak, 110 Hz) and 223 K (2<sup>nd</sup> peak, 110Hz).

#### 4. Stress-strain curve for the PI2000-P films



**Figure S3**. Stress-strain curve for the PI2000-P films. Tensile tests were carried out using an EZ-Graph tensile tester (Shimadzu Co., Ltd) with 50 N load cell. The gauge length was 10 mm. Samples were extended at a crosshead speed of 10 mm/min at 298 K. The strain was calculated based on the crosshead displacement. The elastic modulus was determined by following equation

$$\alpha \sigma = E \varepsilon^n \tag{S1}$$

where the  $\alpha$  is stretch ratio, *E* is elastic modulus. We calculated the *E* in the strain range where the *n* is equal to 1.

### 4. Thermogravimetric analysis data and appearance of the residues after TGA analysis



**Figure S4**. Thermogravimetric analysis profiles for (a) PI400-N, (b) PI2000-P, and (c) hydroxy-terminated poly(propylene glycol) ( $M_w$ : 2500). Heating rate was set at 10 K min<sup>-1</sup>.



**Figure S5**. Photograph of residues after TGA analysis. (a) PI2000-P, (b) PI400-N, and (c) hydroxy-terminated poly(propylene glycol) ( $M_w$ : 2500). The TGA analysis was carried out in a temperature range of 300 K to 820 K.