Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Probing the surface oxide formations on the SiO₂-supported platinum nanocatalysts under CO oxidation

Sunyoung Oh,^{ab} Seoin Back,^a Won Hui Doh,^{ab} Song Yi Moon,^{ab} Jeongjin Kim,^{ab} Yousung Jung,^{*a} and Jeong Young Park^{*ab} ^a Graduate School of EEWS, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

^b Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea.

KEYWORDS: DRIFTS, Pt nanoparticles, CO oxidation, Surface oxide.

*To whom correspondence should be addressed. E-mail: jeongypark@kaist.ac.kr, ysjn@kaist.ac.kr

Fig. S1 XPS for Cl 2p for as-synthesized Pt/SiO_2 .

Fig. S2 Comparison of FTIR spectra for KBr under N_2 (185 °C and 250 °C) and Pt/SiO₂ during CO oxidation at 185 °C.

Fig. S3 Temperature-dependent FTIR spectra under CO oxidation condition for bare SiO₂

Peak Designation	Temperature	Peak Position	Peak FWHM	Deak Shape
	(°C)	(cm^{-1})	(cm ⁻¹)	reak Shape
As-synthesized Pt{111}	27	2065	28.1	Gaussian
As-synthesized Pt{111}	151	2056	28.1	Gaussian
As-synthesized Pt{111}	185	2064	27.6	Gaussian
As-synthesized Pt{200}	27	2043	37.3	Gaussian
As-synthesized Pt{200}	185	2039	32.3	Gaussian
O_2 -treated Pt{111}	27	2078	24.4	Gaussian
O_2 -treated Pt{111}	231	2071	22.8	Gaussian

Table S1. Peak fitting parameters used in quantitative IR analysis.

Relative Co-adsorption	Frequency	Pt-C	C≡O
Relative Co-adsorption	(cm^{-1})	(Å)	(Å)
1/9 R _F CO	2048	1.867	1.151
2/9 R _F CO	2038	1.858	1.162
3/9 R _F CO	2033	1.855	1.163
$2/9 R_F CO + 1/9 R_F O$	2047	1.860	1.160
$1/9 R_F CO + 2/9 R_F O$	2060	1.865	1.158

Table S2 The theoretical calculations of frequencies of CO, Pt–C and C \equiv O bond lengths as a function of relative Co-adsorption.