Electronic Supplementary Information

Thio-Michael addition of α,β -unsaturated amides catalyzed by Nmm-based ionic liquids

Yawei Liu,^{a,‡} Zhenzhen Lai,^{a,‡} Pengkun Yang,^{a,‡} Yuanqing Xu,^a Wenkai Zhang,^a Baoying Liu,^a Minghua Lu,^a Haibo Chang,^a, Tao Ding*,^a Hao Xu*,^{a,b}

^aCollege of Chemistry and Chemical Engineering and ^bKey Lab for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, P. R. China.

E-mail: xuhao@henu.edu.cn; dingtao@henu.edu.cn

Table of contents

General experimental procedures	P2		
Recycling of the catalyst [Nmm-PDO][Gly]			
¹³ C NMR spectrum of N,N-dimethylacrylamide and N,N-dimethylacrylamide-[Nmm-			
PDO][Gly] mixture P3			
Reference	P4		
The ¹ H and ¹³ C NMR spectra of [Nmm-PDO][OAc] and [Nmm-PDO][Gly]			
The ¹ H and ¹³ C NMR spectra of compounds 3a-3f '			

General experimental procedures

The reaction is carried out at room temperature in water or solvent-free. NMR spectra were recorded on Bruker AVANCE III HD 400MHz; Proton and carbon magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded using tetramethylsilane (TMS) in the solvent of CDCl₃ as the internal standard (¹H NMR: TMS at 0.00 ppm,CHCl₃ at 7.26 ppm; ¹³C NMR: CDCl₃ at 77.16 ppm) or were recorded using tetramethylsilane (TMS) in the solvent of DMSO- d_6 as the internal standard (¹H NMR: TMS at 0.00 ppm, DMSO at 2.50 ppm; ¹³C NMR: DMSO at 39.51 ppm)

Compounds 2c, 2e-2i was synthesized by previous method.¹

Recycling of the catalyst [Nmm-PDO][Gly]

Table S1. Recycling of the catalyst in thio-Michael addition of *N*,*N*-dimethylacrylamide with propanethiol

$SH + H = H_{CH_{3}} \xrightarrow{CH_{3}} H_{CH_{3}} \xrightarrow{(Nmm-PDO][Gly]} S \xrightarrow{CH_{3}} H_{2O, 25 \circ C} \xrightarrow{S} \xrightarrow{CH_{3}} H_{CH_{3}}$		
	1a 2b	3j
Run	Time/h	Yield (%) ^b
1	6	90
2°	15	84
3°	30	79

^{*a*}Reaction conditions: propanethiol (0.5 mmol), *N*,*N*-dimethylacrylamide (0.5 mmol), catalyst [Nmm-PDO][Gly] (10 mol%), water (1 mL), room temperature. ^{*b*}Isolated yield. ^{*c*}Upon completion of the reaction, the solution was extracted with ethyl acetate. The residual IL-catalyst in aqueous phase was obtained just by concentration, and reused for next recycling.

¹³C NMR spectrum of *N*,*N*-dimethylacrylamide and *N*,*N*-dimethylacrylamide-[Nmm-PDO][Gly] mixture

Figure S1. ¹³C NMR of *N*,*N*-dimethylacrylamide (2b)

Figure S2. ¹³C NMR of *N*,*N*-dimethylacrylamide-[Nmm-PDO][Gly] mixture

Reference

S. Chanthamath, S. Takaki, K. Shibatomi and S. Lwasa, *Angew. Chem., Int. Ed.*, 2013, **52**, 5818.

The ¹H and ¹³C NMR spectra of compounds [Nmm-PDO][X] and [Nbmm][OAc]

1 1

The ¹H and ¹³C NMR spectra of compounds 3a-3f'

