Electronic Supplementary Information

for

Monte Carlo study of chemical reactions equilibria in pores of activated carbons

Sylwester Furmaniak, Piotr A. Gauden, Piotr Kowalczyk, Andrzej Patrykiejew

number of pages: 7
number of tables: 1
number of figures: 6

Table S1

Criteria of acceptation for different trial moves ($N_{i}-$ the number of i-th kind of molecules, T temperature, k_{B} - Boltzmann constant, V-volume of the simulation box, ΔU - the change in configurational energy, Γ - reaction quotient, Z_{i} - the activity of i-th component ($Z_{i}=p_{i} / k_{B} T$ and p_{i} is the pressure of i-th component in the bulk phase); we have assumed the ideality of the gases).

displacement of random molecule	reaction steps (dimerization)
$P_{\text {acc }}=\min \left\{1 ; \exp \left[-\frac{\Delta U}{k_{B} T}\right]\right\}$	$\begin{gathered} - \text { forward }(\mathrm{A}+\mathrm{A} \rightarrow \mathrm{~B}) \\ P_{\text {acc }}=\min \left\{1 ; \frac{\Gamma}{V} \frac{\left(N_{A}-1\right) N_{A}}{N_{B}+1} \exp \left[-\frac{\Delta U}{k_{B} T}\right]\right\} \\ \\ -\operatorname{backward}(\mathrm{B} \rightarrow \mathrm{~A}+\mathrm{A}) \\ P_{\text {acc }}=\min \left\{1 ; \frac{V}{\Gamma} \frac{N_{B}}{\left(N_{A}+1\right)\left(N_{A}+2\right)} \exp \left[-\frac{\Delta U}{k_{B} T}\right]\right\} \end{gathered}$
creation of molecule of \boldsymbol{i}-th kind	
$P_{\text {acc }}=\min \left\{1 ; \frac{Z_{i} V}{N_{i}+1} \exp \left[-\frac{\Delta U}{k_{B} T}\right]\right\}$	
annihilation of molecule of \boldsymbol{i}-th kind	
$P_{a c c}=\min \left\{1 ; \frac{N_{1}}{Z_{i} V} \exp \left[-\frac{\Delta U}{k_{B} T}\right]\right\}$	
reaction steps (isomerization)	reaction steps (synthesis)
- forward ($\mathrm{A} \rightarrow \mathrm{B}$)	- forward ($\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$)
$\begin{aligned} P_{\text {acc }}= & \min \left\{1 ; \Gamma \frac{N_{A}}{N_{B}+1} \exp \left[-\frac{\Delta U}{k_{B} T}\right]\right\} \\ & -\operatorname{backward}(\mathrm{B} \rightarrow \mathrm{~A}) \end{aligned}$	$\begin{aligned} P_{\text {acc }}= & \min \left\{1 ; \frac{\Gamma}{V} \frac{N_{A} N_{B}}{N_{C}+1} \exp \left[-\frac{\Delta U}{k_{B} T}\right]\right\} \\ & -\operatorname{backward}(\mathrm{C} \rightarrow \mathrm{~A}+\mathrm{B}) \end{aligned}$
$P_{a c c}=\min \left\{1 ; \frac{1}{\Gamma} \frac{N_{B}}{N_{A}+1} \exp \left[-\frac{\Delta U}{k_{B} T}\right]\right\}$	$P_{a c c}=\min \left\{1 ; \frac{V}{\Gamma} \frac{N_{C}}{\left(N_{A}+1\right)\left(N_{B}+1\right)} \exp \left[-\frac{\Delta U}{k_{B} T}\right]\right\}$

Figure S1. The comparison of the composition of the reacting phase ($T=298 \mathrm{~K}$) in pores of all the considered VPCs for the isomerisation reaction ($\mathrm{A} \leftrightarrow \mathrm{B}$). The data corresponding to different values of the reaction constant (Γ) and the same value of the potential well depth for the product molecules ($\varepsilon_{\mathrm{BB}} / k_{B}=120 \mathrm{~K}$) have been shown. The subsequent panels present the average densities of the reactant $\left(\rho_{\mathrm{A}}\right)$ and the product $\left(\rho_{\mathrm{B}}\right)$ in pores (the densities have been calculated per the volume of accessible pores) and the mole fraction of the product in the mixture $\left(x_{\mathrm{B}}\right)$. The x_{B} mole fractions for the reactions in the bulk phase are shown as horizontal solid lines.

Figure S2. As in Figure S1, but for the fixed value of the equilibrium constant $(\Gamma=1)$ and different values of the potential well depth for product molecules ($\varepsilon_{\mathrm{BB}}$). The horizontal lines present the x_{B} mole fraction in the bulk phase (it should be noted that these lines are overlapped).

Figure S3. As in Figure S1 but for the dimerisation reaction (A+A $\leftrightarrow B$). The data for different values of the reaction constant (Γ) and the same value of the potential well depth for the product molecules $\left(\varepsilon_{\mathrm{BB}} / k_{B}=72 \mathrm{~K}\right)$ have been shown. The x_{B} mole fractions for the reactions in the bulk phase have been shown as horizontal solid lines.

Figure S4. As in Figure S 1 but for the synthesis reaction ($\mathrm{A}+\mathrm{B} \leftrightarrow \mathrm{C}$). The data presented correspond to the different values of the reaction constant (Γ) and the fixed values of the potential well depth for the reactant $\mathrm{B}\left(\varepsilon_{\mathrm{BB}} / k_{B}=110 \mathrm{~K}\right)$ and the product $\left(\varepsilon_{\mathrm{CC}} / k_{B}=72 \mathrm{~K}\right)$. The reactants pressure in the bulk phase have been taken as $p_{\mathrm{A}}=p_{\mathrm{B}}=0.05 \mathrm{MPa}$. The upper panels present the average densities of the reacting species (ρ_{A}, ρ_{B} and ρ_{C}). The lower panels show their mole fractions in the mixture ($x_{\mathrm{A}}, x_{\mathrm{B}}$ and x_{C}). The mole fractions for the reaction taking place in the bulk phase are marked by horizontal lines.

Figure S5. The average densities of the reacting molecules for the isomerisation reaction ($\mathrm{A} \leftrightarrow \mathrm{B}$) in the selected VPCs as the functions of the equilibrium constant in the logarithmic scale $\left(\varepsilon_{\mathrm{BB}} / k_{B}=120 \mathrm{~K}\right)$. Two cases have been considered: (i) the molecules of A have been created and annihilated in the pores according to the GCMC moves (adsorption from gaseous phase), while the B molecules have been formed or destructed only via the reaction step (the data presented as lines) and (ii) the B molecules could be adsorbed, while the molecules of A have been created or destructed only during the reaction (the data presented as points). In the case (i) $p_{\mathrm{A}}=0.1 \mathrm{MPa}$ for all the systems, and in the case (ii) $p_{\mathrm{B}}=\Gamma_{\mathrm{A} \leftrightarrow \mathrm{B}} \times p_{\mathrm{A}}\left(p_{\mathrm{A}}=0.1 \mathrm{MPa}\right)$.

Figure S6. As in Figure S 5 but for the dimerisation reaction ($\mathrm{A}+\mathrm{A} \leftrightarrow \mathrm{B} ; \varepsilon_{\mathrm{BB}} / k_{B}=72 \mathrm{~K}$). In the case of the adsorption of B molecules (points), $p_{\mathrm{B}}=\Gamma_{\mathrm{A}+\mathrm{A} \leftrightarrow \mathrm{B}} \times p_{\mathrm{A}}^{2} /\left(k_{B} \times T\right)$ and $p_{\mathrm{A}}=0.1 \mathrm{MPa}$.

