Ambipolar 3,3'-dimethyl-9,9'-bianthracene derivative as blue host material for high-performance OLEDs

ZhanfengLi, ${ }^{\text {a* }}$ Xiangkun Wang, ${ }^{a}$ Xiang Lv, ${ }^{a}$ Changfeng Si, ${ }^{\text {b }}$ Bin Wei, ${ }^{\text {b* }}$ Hua Wang ${ }^{\text {c }}$ and Yuying Hao ${ }^{\text {a* }}$

${ }^{\text {a }}$ Key Lab of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China. E-mail: lizhanfeng@tyut.edu.cn; haoyuying@tyut.edu.cn
${ }^{\mathrm{b}}$ Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, China. Email: bwei@shu.edu.cn
${ }^{\text {c }}$ Key Laboratory of Interface Science and Engineering in Advanced Materials,
Taiyuan University of Technology, Taiyuan 030024, China

S1. Synthesis and characterization

MBAn-(4)-tBu was synthesized bypalladium(0)-catalyzed Suzuki cross-coupling reaction between [4-(tert-butyl)phenyl]boronic acid and brominated 3,3'-dimethyl[$9,9^{\prime}$ ']bianthracene (MBAn2Br), as shown in the Scheme S1. After purification by column chromatography and recrystallization, the newly synthesized MBAn-(4)-tBu was purified further by train sublimation at a reduced pressure below $10^{-3} \mathrm{~Pa}$ and fully characterized with ${ }^{1} \mathrm{H}$ NMR.

S1.1 Synthesis of 9,9'-bi(2,2'-bimethyl)anthracene (MBAn)

2-methyl anthraquinone ($13.32 \mathrm{~g}, 60 \mathrm{mmol}$), $\mathrm{Zn}(22.5 \mathrm{~g}, 346 \mathrm{mmol})$ and acetic acid (300 mL) were mixed in a flask under nitrogen. All reagents and solvents were used as purchased from commercial sources without further purification. When the reaction mixture was heated to $90^{\circ} \mathrm{C}$ and slowly add concentrated hydrochloric acid (70 mL) at this temperature. After the reaction came to an end for $10-15 \mathrm{~h}$, (inspected by thin layer chromatography), the product was filtrated and then purified by toluene. MBAn was obtained as a pale yellow powder. Yield: $91.6 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta$ 2.30-2.54 (s, 6H), 6.88-7.07 (m, 8H), 7.30-7.39 (m, 2H), 7.80-8.08 (m, 4H), 8.47-8.58 (m, 2H). Anal. Calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{22}$: C, 94.20%; H, 5.80%. Found: C, 94.36%; H, 5.64\%.

S1.2 Synthesis of 10,10'-dibromo-9,9'-bi(2,2'-bimethyl)anthracene (MBAn2Br).

BAn ($2.0 \mathrm{~g}, 5.2 \mathrm{mmol}$) and DMF (10 mL) were mixed in a flask. N -bromosuccinimide (NBS) ($2.8 \mathrm{~g}, 15.6 \mathrm{mmol}$) and DMF (67 mL) were mixed in a constant pressure funnel. When the reaction mixture was cooled at $5^{\circ} \mathrm{C}$, NBS solution was slowly added to the reaction mixture. After the reaction mixture was stired for 10 h at room temperature, the product was filtrated and then purified by toluene. MBAn2Br was obtained as a pale yellow powder. Yield: 80%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 2.46-$ $2.69(\mathrm{~s}, 6 \mathrm{H})$, 6.96-7.65 (m, 10H), 8.44-8.50 (m, 2H), 8.67-8.73 (m, 2H). Anal. Calcd (\%) for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Br}_{2}$: C, 66.69%; $\mathrm{H}, 3.73 \%$. Found: $\mathrm{C}, 66.42 \%$; $\mathrm{H}, 3.66 \%$.

Scheme S1 Synthetic procedures for MBAn-(4)-tBu.

S2. Theoretical calculations

In order to gain insights into the geometrical configuration of the compound, density function theory (DFT) calculations were carried out using the Gaussian 09 program at the B3LYP/6-31G* level. The optimized molecular geometries of these molecules are shown in Fig. S1.

Fig. S1 The optimized geometry and frontier molecular orbital surfaces of MBAn-(4)-tBu.

S3. Physical properties of MBAn-(4)-tBu

A summary of the precise photophysical data of the compound is given in Table S1.
Table S1 Physical properties of MBAn-(4)-tBu

Compound	$\begin{gathered} \lambda \text { Abs max (nm) } \\ \operatorname{soln}^{a} / \mathrm{film}^{b} \end{gathered}$	λ PL $\max (\mathrm{nm})$ soln ${ }^{a} /$ film ${ }^{b}$	$E_{\mathrm{ox}} \mathrm{c}$ (V)	$\Phi_{\mathrm{F}}{ }^{\mathrm{d}}$	$\begin{aligned} & \mathrm{HOMO} / \mathrm{LUMO}_{\exp }{ }^{\mathrm{e}} \\ & \left(E_{\mathrm{g}}\right)(\mathrm{eV}) \end{aligned}$	HOMO/LUMO ${ }_{\text {cal }}$ ($\left.\Delta E_{\text {номо-цимо }}\right)$ (eV)	$\begin{gathered} T_{\mathrm{g}} / T_{\mathrm{m}} / T_{\mathrm{d}}{ }^{\mathrm{f}} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$
MBAn-(4)-tBu	$\begin{aligned} & 344,363,384,404 \\ & / 343,364,384,406 \end{aligned}$	460/461	0.52	7.1	-5.3/-2.4(2.9)	-5.0/-1.5(3.5)	-/402/407

${ }^{a}$ Measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. ${ }^{b}$ Measured in solid thin film on quartz plates. ${ }^{c}$ Measured in $\mathrm{CH}_{3} \mathrm{CN}$. ${ }^{d}$ Absolute photoluminescence quantum yielddetermined in solid. ${ }^{e}$ Values from DFT calculation. ${ }^{f} T_{\mathrm{g}}$: glass-transition temperature; T_{m} :melting point; T_{d} : decomposition temperature.

S4. EL properties of MBAn-(4)-tBu as deep-blue dopants

We chosed MBAn-(4)-tBu as the dopant for device fabrication. In this device, the well known ambipolar conductive 4,4'-bis(N-carbazolyl)biphenyl (CBP) was used as host material. As shown in Fig. S2, the device D was fabricated with the following configuration: ITO/HAT-CN (5 nm)/TAPC (40 nm)/CBP: MBAn-(4)-tBu (20 $\mathrm{nm}) / \mathrm{TPBi}(40 \mathrm{~nm}) / \operatorname{Liq}(1 \mathrm{~nm}) / \mathrm{Al}(120 \mathrm{~nm})$. The dopant was co-evaporated with CBP to give the optimal doping concentration of $5 \mathrm{wt} \%$ in the EML. Fig. S3 and Fig. S4 exhibited the $J-V-L-\eta$ characteristics of the MBAn-(4)-tBu-doped CBP device. The
key device performance parameters and EL emission characteristics were summarized in Table S2. Device D successfully realized deep-blue emissions with CIE coordinates of $(0.15,0.07)$, which not only meet the NTSC standard, but also approach to the criterion of European Broadcasting Union standard of (0.15, 0.06). The MBAn-(4)-tBu-doped CBP device exhibits good performance with a low turn-on voltage of 3.2 V , luminance of $3874 \mathrm{~cd} \mathrm{~m}^{-2}$, which has been greatly improved when compared with the non-doped devices. Notably, these efficiencies show little roll-off at high brightness, although the EQE of device B (3.00\%) is lower than device A (3.94\%) in the deepblue visible region with a CIE chromaticity coordinates ($0.16,0.07$).

Device D

Fig. S2 Structure of device D and the energy levels of the material.

Fig. S3 (a) Current density-voltage curve, (b) Brightness-voltage curve, (c) Current efficiencycurrent density curve, and (d) Power efficiency-current density curve for MBAn-(4)-tBu-doped CBP device.

Fig. S4 (a) Normalized EL spectra of MBAn-(4)-tBu device, (b) External quantum efficiencycurrent density curves for MBAn-(4)-tBu-doped CBP device.

Table S2 EL performance of the MBAn-(4)-tBu-doped CBP device

| EML | $V_{\text {on }}{ }^{\mathrm{a}}$ | $\lambda_{\mathrm{EL}}{ }^{\mathrm{b}}$ | $L_{\mathrm{max}}{ }^{\mathrm{c}}$ | $\eta_{\mathrm{c}}{ }^{\mathrm{d}}$ | $\eta_{\mathrm{p}}{ }^{\mathrm{d}}$ | $\eta_{\mathrm{ext}}{ }^{\mathrm{d}}$ | FWHW | CIE (x, y) ${ }^{\mathrm{b}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (V) | (nm) | $\left(\mathrm{cd} \mathrm{m}^{-2}\right)$ | $\left(\mathrm{cd} \mathrm{A}^{-1}\right)$ | $\left(\operatorname{lm~W}^{-1}\right)$ | $(\%)$ | ${ }^{\mathrm{b}}(\mathrm{nm})$ | |
| CBP: MBAn-(4)-tBu | 3.3 | 444 | 3874 | 1.96 | 1.69 | 3.00 | 55 | $(0.15,0.07)$ |

${ }^{a}$ Turn-on voltage at $1 \mathrm{~cd} \mathrm{~m}^{-2} .{ }^{b}$ Valuescollected at $8 \mathrm{~V} .{ }^{c}$ Maximum luminance. ${ }^{d}$ Values collected at a peak efficiency.

