Supporting Information for

Rapid and label-free strategy for the sensitive detection of Hg²⁺ based on target-triggered exponential strand displacement amplification

By Chang Yeol Lee,^a Hyo Yong Kim,^a Jun Ki Ahn,^a Ki Soo Park^{*b} and Hyun Gyu Park^{*a}

^aDepartment of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 305-338, Republic of Korea ^bDepartment of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea

* To whom correspondence should be addressed.

E-mail: hgpark@kaist.ac.kr (H.G. Park); Phone: +82-42-350-3932; Fax: +82-42-350-3910. E-mail: kskonkuk@gmail.com (K.S. Park); Phone: +82-2-450-3742; Fax: +82-2-450-3742.

Material/method	Detection time	Detection limit	Limitations	Reference
DNA-templated silver nanocluster (DNA-AgNC)	9.5 hr	10 nM	Long detection time	1
Target-induced DNAzyme reaction with molecular beacon	20 min	0.2 nM	Labeling with fluorophore and quencher	2
DNA- functionalized quantum dot and gold nanoparticle	50 min	0.18 nM	 Preparation of nanomaterials Functionalization with DNA 	3
Carbon nanotube/AgNC with Exo III- assisted cyclic amplification	3 hr	33 pM	-	4
Hybridization chain reaction with graphene oxide	2.3 hr	0.3 nM	 Labeling with fluorophore Long detection time 	5
Hairpin structure- promoted primer extension reaction	30 min	40 pM	-	6
Strand displacement amplification/nicki ng endonuclease- assisted signal amplification with molecular beacon	2 hr	2 pM	 Labeling with fluorophore and quencher Use of multiple enzymes 	7
Real-time monitoring of EXPAR	30 min	100 pM	-	8
Hyperbranched RCA	3.5 hr	0.14 pM	Long detection time	9
Real-time monitoring of eSDA	30 min	2.95 pM	-	This work

Table S1 Comparison of this method with the previous fluorometric methods.

Strand name ^(c)	DNA sequence $(5' \rightarrow 3')^{(a), (b)}$
ТР	GCG GTC GGA AGC TCG CTA CTG AGC AGT TTT TTT TTT TTT TTT
FP-T4	AGG TCA GGA TC T AGC GG <u>T T</u> AA AAA AAA AAA A <mark>TT</mark>
FP-T8	AGG TCA GGA TC T AGC GG <u>T TTT</u> AAA AAA AA <mark>T TTT</mark>
FP-T12	AGG TCA GGA TC T AGC GG <u>T TTT TT</u> A AAA <u>TTT TTT</u>
FP-T16	AGG TCA GGA TC T AGC GG <u>T TTT TTT TTT TTT TTT</u>
RP	AGG TCA GGA TC G CGG TCG GAA GCT

Table S2 DNA sequences employed in this work.

^(a) The sequence in RP identical to TP is highlighted in blue while the sequence in FP-T# complementary to TP is highlighted in red, where # is the number of T bases forming the mismatched T-T base pairs with TP, which are underlined.

^(b) The recognition sequence for nicking endonuclease is bold.

^(c) TP, FP, and RP indicate template, forward primer, and reverse primer, respectively.

Table S3 Reproducibility of the Hg^{2+} detection method. SDs and RSDs (=SD/mean x 100) for T_t are listed at varying concentrations of Hg^{2+} (n=3).

Concentration of Hg ²⁺ (pM)	SD	RSD (%)
0	0.58	1.95
10	0.29	1.04
40	0.29	1.14
100	0.58	2.37
400	0.29	1.27
1000	0	0
10000	3.03	3.03

Fig. S1 Measurement of the concentration of Hg^{2+} in the tap water with ICP-MS.

Fig. S2 Target-triggered extension of FP and TP. Fluorescence intensities from SYBR green I are plotted as a function of time during the extension by DNA polymerase in the absence and presence of Hg²⁺ (100 nM). The reaction temperature is 42.5 °C and the concentrations of TP and FP-T12 (Table S2) are 100 nM and 100 nM, respectively. The nicking endonuclease (Nt.AlwI) and RP were not included.

Fig. S3 (a) T_t in the presence of buffer solution and tap water. (b) Fluorescence intensities from SYBR green I plotted as a function of time in the presence of Hg^{2+} spiked in the tap water.

References

- 1. L. Deng, Z. Zhou, J. Li, T. Li and S. Dong, *Chem. Commun.*, 2011, **47**, 11065-11067.
- 2. L. Qi, Y. Zhao, H. Yuan, K. Bai, Y. Zhao, F. Chen, Y. Dong and Y. Wu, *Analyst*, 2012, **137**, 2799-2805.
- 3. D. Huang, C. Niu, X. Wang, X. Lv and G. Zeng, *Anal. Chem.*, 2013, **85**, 1164-1170.
- 4. G. Wang, G. Xu, Y. Zhu and X. Zhang, *Chem. Commun.*, 2014, **50**, 747-750.
- 5. J. Huang, X. Gao, J. Jia, J.-K. Kim and Z. Li, *Anal. Chem.*, 2014, **86**, 3209-3215.
- 6. X. Zhu, X. Zhou and D. Xing, *Biosens. Bioelectron.*, 2011, **26**, 2666-2669.
- 7. G. Zhu, Y. Li and C.-y. Zhang, *Chem. Commun.*, 2014, **50**, 572-574.
- 8. H. Jia, Z. Wang, C. Wang, L. Chang and Z. Li, *RSC Adv.*, 2014, **4**, 9439-9444.
- 9. J. Chen, P. Tong, Y. Lin, W. Lu, Y. He, M. Lu, L. Zhang and G. Chen, *Analyst*, 2015, **140**, 907-911.