Supporting information

Heterogeneous Fenton-like Catalysis of Fe-MOF derived Magnetic Carbon

Nanocomposites for Degradation of 4-Nitrophenol

Dezhi Chen^a, Shasha Chen^a, Shasha Xie^a, Yijie Jiang^a, Hongying Quan^b, Li Hua^a,

Xubiao Luo^a* and Lin Guo^{a,c}

^a Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources

Recycle, School of Environmental and Chemical Engineering, Nanchang Hangkong

University, No. 696, Fenghe South Avenue, Nanchang, 330063, China.

^b School of Materials Science and Engineering, Nanchang Hangkong University, No.
696, Fenghe South Avenue, Nanchang 330063, China.

Samples	BET Surface	Total pore	re Average Pore		
	Area (m^2/g)	volume(cm ³ /g)	Size(nm)		
Fe-C ₄₀₀	49.1094	0.104012	8.47187		
Fe-C ₄₅₀	42.9603	0.126614	11.78889		
Fe-C ₅₀₀	86.6838	0.182011	8.39883		
Fe-C ₅₅₀	171.2443	0.419783	9.80548		
Fe-C ₆₀₀	88.9648	0.252081	11.33396		

Table S1 Summary of BET surface areas, total pore volume and pore size calculated from nitrogen isotherms for the obtained MIL-88-Fe-x. (x=400, 450, 500, 550, 600)

Atom%	Iron	Oxygen	Carbon	chlorine	Nitrogen
Fe-MOF	5.47	27.82	60.47	4.84	1.40
Fe-C ₄₀₀	4.78	17.88	72.07	4.12	1.15
Fe-C ₄₅₀	3.03	13.23	79.56	3.06	1.12
Fe-C ₅₀₀	2.83	9.87	84.10	2.73	0.47
Fe-C ₅₅₀	1.11	4.93	92.42	1.04	0.51
Fe-C ₆₀₀	1.33	5.07	93.11	0.34	0.15

Table S2. The elements in the surface of Fe-C_x composites by XPS results.

Table S3. Speculated main components of Fe-C_x at different pyrolysis temperature

	Speculated main components
Fe-MOF	$Fe_{3}(O)Cl[C_{6}H_{4}(CO_{2})_{2}]_{3}(C_{3}H_{7}NO)$
Fe-C ₄₀₀	$Fe_{3}(O)Cl_{i}[C_{6}H_{4}(CO_{2})_{2-n}]_{3-j}(C_{3-m}N)$
Fe-C ₄₅₀	$Fe_{3\text{-}m}(O)Cl_i[C_6H_4(CO_2)_{2\text{-}n}]_{3\text{-}j}(C_{3\text{-}m}N),$ $\gamma\text{-}Fe_2O_3$ and amorphous carbon
Fe-C ₅₀₀	$Fe_{3-m}(O)Cl_i[C_6H_4(CO_2)_{2-n}]_{3-j}(C_{3-m}N)$, γ - Fe_2O_3 and amorphous carbon
Fe-C ₅₅₀	γ -Fe ₂ O ₃ , Fe ₃ O ₄ and amorphous carbon
Fe-C ₆₀₀	Fe ₃ O ₄ and amorphous carbon

Figure S1. C 1s spectra of a) Fe-MOF, b) Fe-C₄₀₀, c) Fe-C₄₅₀, d) Fe-C₅₀₀, e) Fe-C₅₅₀, d) Fe-C₆₀₀.

Figure S2. O 1s spectra of a) Fe-MOF, b) Fe-C₄₀₀, c) Fe-C₄₅₀, d) Fe-C₅₀₀, e) Fe-C₅₅₀, f)

Fe-C₆₀₀.

Figure S3. Arrhenius linear plot of the degradation of 4-NP by Fe- $\!C_{500}$

Figure S4. Recycling of Fe- C_{500} by using a magnet after 4 cycles.