Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Experimental Methods

Materials

Carbon nano-onions were prepared by the thermal annealing of commercially available nanodiamond powders (Nanostructured and Amorphous Materials, Inc., Houston, TX) at 1650 °C for 1h under the flow of helium in a graphitization furnace. H₂SO₄, HNO₃, K₂CO₃ and NH₄OH were purchased from Sigma-Aldrich. The 200 mL stainless steel hydrothermal reactor houses a PTFE sample chamber in which the ox-GQDs were reacted with aqueous ammonia. All samples were dialyzed against deionized water in 1 kDa MWCO dialysis bags purchased from Spectrum Labs.

Instrumentation and Sample Preparation

The size of GQDs and N-GQDs were characterized by a JEOL JEM-2200FS, 200 kV electron acceleration voltage TEM and the thickness was measured with a Park Systems XE-70 AFM operating in non-contact mode. TEM samples were prepared by dipping a TEM copper grid (lacey carbon support film) into a dilute solution of GQD sample. AFM samples were prepared by dropping 5 µL GQD sample onto a mica substrate disc and spin casting to dry. FTIR spectra were taken with a Thermo Scientific Model Nicolet 6700 FTIR Spectrometer operating with a diamond ATR crystal. FTIR samples were prepared by dropping 5 µL GQD samples onto the ATR crystal and drying in an oven until a thick film was observed. The XPS characterization was conducted with a Thermo Scientific Model K-Alpha XPS instrument. The XPS samples were prepared by dropping 5 µL of GQD sample onto a silicon wafer and drying between depositions until a thick film could be observed. Absorption spectra were collected with a Thermo Scientific Evolution 201 Spectrophotometer and emission spectra were recorded with a Jobin-Yvon

Spectromax 4 Spectrofluorometer. Optical properties were measured using a quartz cuvette with 10 mm

Figure S1: FTIR Spectra of N-GQD-150 (top) and ox-GQD (bottom).

path length.

Figure S2: Emission spectra of ox-GQD (top left), N-GQD-90 (top right), N-GQD-150 (bottom left), and N-GQD-190 (bottom right).

Experimental	Year Published	~398.5 eV	~399.5 eV	~400 eV	>401 eV
WORK					
Tetsuka et al. ⁷	2012		Amine N		
			(399.7 eV)		
Dai et al. ⁹	2014		Pyrrolic N		Graphitic N
			(399.7 eV)		(401.6 eV)
Li et al. ¹⁰	2012	Pyridinic N			Pyrrolic N
		(398.5 eV)			(401 eV)
NIST Database ²⁵	2012	Pyridinic N	Amine N	Pyrrolic N	Graphitic N
		(398.6 eV)	(399.4 eV)	(399.9 eV)	(401.3 eV)
This work	2015	Pyridinic N	Amine N	Pyrrolic N	Graphitic N
		(398.5 eV)	(399.3 eV)	(400.2 eV)	(401.3 eV)

Table S1: XPS N1s peak assignments in recent literature and this work.