Electronic Supplementary Information

Synthesis of a 12-Membered Cyclic Siloxane Possessing Alkoxysilyl Groups as a Nanobuilding Block and Its Use for Preparation of Gas Permeable Membrane

Masashi Yoshikawa,^a Hiroya Shiba,^a Masakoto Kanezashi,^b Hiroaki Wada,^a Atsushi Shimojima,^a Toshinori Tsuru,^b and Kazuyuki Kuroda*a,^c

^aDepartment of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku-ku, Tokyo 169-8555, Japan

E-mail: kuroda@waseda.jp; Fax: +81 3 5286 3199; Tel: +81 3 5286 3199

^bDepartment of Chemical Engineering, Hiroshima University, 1-4-1 Kagami-yama, Higashi-Hiroshima 739-8527, Japan

^cKagami Memorial Research Institute for Materials Science and Technology, Waseda University, Nishiwaseda 2-8-26, Shinjuku-ku, Tokyo 169-0051, Japan

Contents

1. ¹³ C NMR spectrum of 12MR-Me-TES	2
2. Solid-state NMR and FT-IR spectra of 12MR-Me-TES-derived gel	3
3. Solid-state NMR spectra of 12MR-gel-as prepared with different hydrolysis time .	4
4. Solid-state NMR spectra of TEOS-MTES-derived gels	5
5. Characterization of Cu ₄ Na ₄ (MeSiO ₂) ₁₂ ·x(nBuOH)·yH ₂ O	6
6. Experimental apparatus for a single-gas permeation measurement	7

1. 13 C NMR spectrum of 12MR-Me-TES

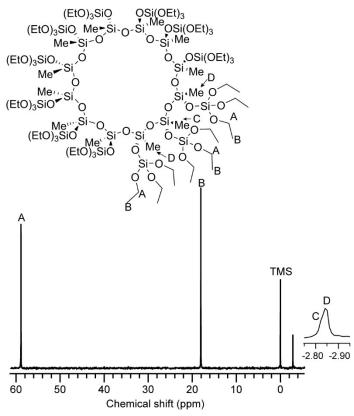


Figure S1 ¹³C NMR spectrum of **12MR-Me-TES**.

2. Solid-state NMR and FT-IR spectra of 12MR-Me-TES-derived gel

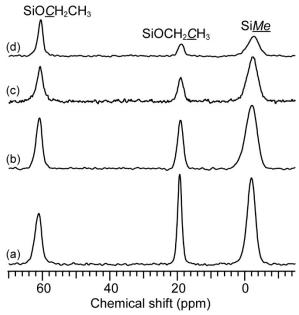


Figure S2 ¹³C CP/MAS NMR spectra of **12MR-Me-TES**-derived gel. (a) **12MR-gel-as**, (b) **12MR-gel-heat100**, (c) **12MR-gel-heat200**, and (d) **12MR-gel-heat300**.

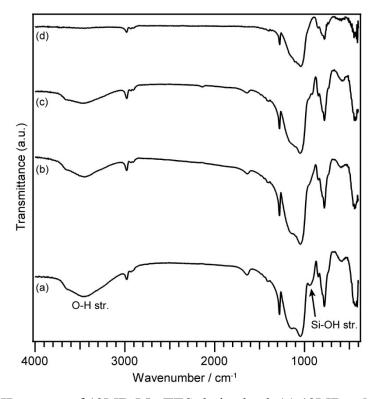


Figure S3 FT-IR spectra of 12MR-Me-TES-derived gel. (a) 12MR-gel-as, (b) 12MR-gel-heat100, (c) 12MR-gel-heat200, and (d) 12MR-gel-heat300.

3. Solid-state NMR spectra of 12MR-gel-as prepared with different hydrolysis time

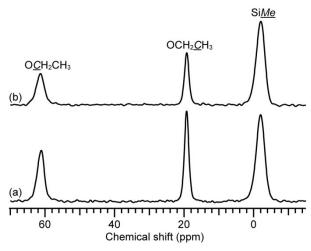


Figure S4 ¹³C CP/MAS NMR spectra of **12MR-gel-as** prepared with different hydrolysis time. (a) 1 d and (b) 2 d.

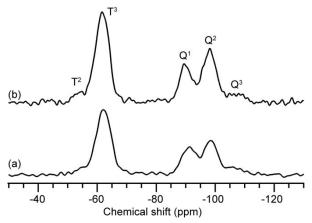


Figure S5 ²⁹Si MAS NMR spectra of **12MR-gel-as** with different hydrolysis time. (a) 1 d and (b) 2 d.

4. Solid-state NMR spectra of TEOS-MTES-derived gels

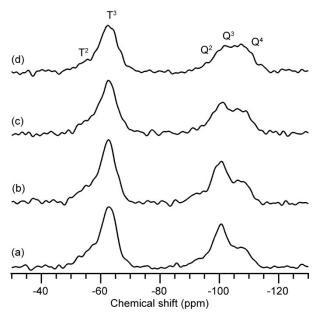


Figure S6 ²⁹Si MAS NMR spectra of TEOS-MTES-derived gel.

(a) TEOS-MTES-gel-as, (b) TEOS-MTES-gel-heat100, (c)TEOS-MTES-gel-heat200, and (d) TEOS-MTES-gel-heat300.

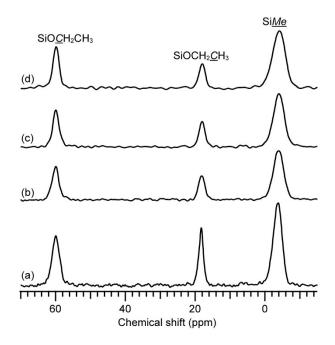


Figure S7 ¹³C CP/MAS NMR spectra of TEOS-MTES-derived gel.

(a) TEOS-MTES-gel-as, (b) TEOS-MTES-gel-heat100, (c)TEOS-MTES-gel-heat200, and (d) TEOS-MTES-gel-heat300.

5. Characterization of Cu₄Na₄(MeSiO₂)₁₂·x(nBuOH)·yH₂O

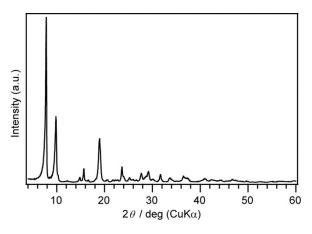


Figure S8 Powder XRD pattern of Cu₄Na₄(MeSiO₂)₁₂·x(nBuOH)·yH₂O.

Experimental procedure for trimethylsilylation of $Cu_4Na_4(MeSiO_2)_{12} \cdot x(nBuOH) \cdot yH_2O$

Cu₄Na₄(MeSiO₂)₁₂·*x*(*n*BuOH)·*y*H₂O (0.1 g) was added to a mixture of dehydrated toluene (20 mL) and dehydrated pyridine (0.58 mL, 7.2 mmol). After stirring until homogenization at room temperature under N₂ atmosphere, chlorotrimethylsilane (0.91 mL, 7.2 mmol) was added to the mixture and blue green precipitates were formed. After stirring the mixture at 40 °C for 24 h, dehydrated ethanol (0.42 mL, 7.2 mmol) was added to the mixture for alkoxylation of remaining chlorotrimethylsilane. The mixture was stirred at room temperature for 30 min, and the precipitates were removed by suction filtration with Celite®. The filtrate was evaporated to obtain a colorless viscous liquid.

Trimethylsilylated 12-membered ring siloxane: δ H (500.13 MHz; CDCl₃; TMS) 0.08 (s, 36H, O₃SiCH₃), 0.11 (s, 108H, OSi(CH₃)₃); δ C (125.76 MHz; CDCl₃; TMS) –2.06 (SiCH₃), –2.01 (SiCH₃), 1.81 (OSi(CH₃)₃), 1.84 (OSi(CH₃)₃); δ Si (99.36 MHz; CDCl₃; TMS) –67.5 (T³, 4Si, O₃SiMe), –67.2, (T³, 8Si, O₃SiMe), 7.61 (M¹, 8Si, OSiMe₃), 7.67 (M¹, 4Si, OSiMe₃); MS (Electrospray ionization, 2 kV): calcd. for C₄₈H₁₄₄O₂₄Si₂₄Na⁺ [M+Na]⁺: 1799.4; found: 1799.3.

6. Experimental apparatus for a single-gas permeation measurement

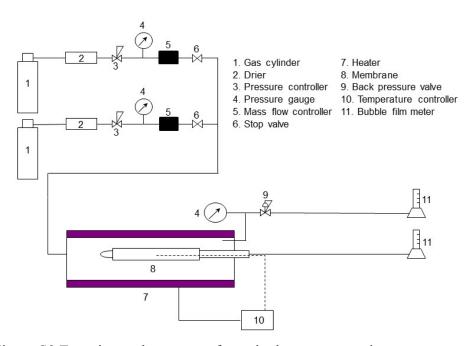


Figure S9 Experimental apparatus for a single-gas permeation measurement.