ESI for

Poly(*N*-isopropylacrylamide-*co-L*-proline)-catalyzed Claisen-Schmidt and Knoevenagel condensations: unexpected enhanced catalytic activity of the polymer catalyst

Hao Zhang,^{ab} Mengting Han,^{ab} Tian Chen,^a Lin Xu^{ab} and Lei Yu^{*ab}

^aInstitute of Pesticide, School of Chemistry and Chemical Engineering and School of

Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225002,

China

^bJiangsu Yangnong Chemical Group Co. Ltd., Yangzhou, Jiangsu 225002, China

^tH. Z. and M. H. contributed equally

* Corresponding author

Email: yulei@yzu.edu.cn.

Table of Contents

Condition optimizations	S2
Original ¹ H NMR spectra of benzaldehyde in mechanism study experiments	S5
GC data and spectra of the polymer absorption test	S9
NMR Spectra of the products	.S11

S1 Condition optimizations

 Table S1. Screenings of the catalyst and additive.^a

	O O cata add Ph H Me Me EtOH 1a 2	alyst (5 mol %) litive (5 mol %) I, 20 °C, 48 h, N ₂ Ph	O Me 3a
Entry	Catalyst	Additive	Yield (%) ^b
1	<i>L</i> -Proline	-	44
2	L-Proline	1-Methylpiperazine	55
3	L-Proline	Morpholine	61
4	<i>L</i> -Proline	Pyrrolidine	49
5	L-Proline	Piperazine	70
6	L-Proline	Et ₂ NH	36
7	L-Proline	(<i>i</i> -Pr) ₂ NH	34
8	L-Proline	Pyridine	32
9	L-Proline	Et ₃ N	28
10	L-Proline	1-Methylpiperidine	43
11	L-Proline	PhNH ₂	48
12	-	Piperazine	15
13	L-Cysteine	Piperazine	29
14	L-Histidine	Piperazine	22
15	L- Arginine	Piperazine	12
16	L-Norvaline	Piperazine	52

17	5-Aminopentanoic acid	Piperazine	17
18	Piperidine-2-carboxylic acid	Piperazine	25
19	Pyrrolidine-3-carboxylic acid	Piperazine	32

^a1 mmol of 1a, 3 mmol of acetone and 1 mL of EtOH were employed.
^bIsolated yields of 3a based on 1a.

 Table S2. Condition optimizations.^a

	0 0 ↓ + ↓	pipe	<i>L</i> -prolin razine (5	e mol %)		o ↓
	Ph´ `H Me´ `M 1a 2	le solve	ent, <i>T</i> , 48	h, N ₂	Ph	Me 3a
Entry	Solvent	2 /1 a ^b	Cat% ^c	Т	Yield	-
				$(^{\circ}\mathrm{C})^{d}$	(%) ^e	
1	EtOH	3	5	20	70	-
2	EtOH/H ₂ O (4:1)	3	5	20	64	
3	EtOH/H ₂ O (1:1)	3	5	20	60	
4	МеОН	3	5	20	50	
5	<i>i</i> -PrOH	3	5	20	66	
6	t-BuOH	3	5	20	57	
7	Acetone	-	5	20	37	
8	Acetone/EtOH (90:10)	-	5	20	46	
9	EtOH	2	5	20	68	
10	EtOH	5	5	20	64	
11	EtOH	3	3	20	58	
12	EtOH	3	0	20	15	

13	EtOH	3	10	20	64
14	EtOH	3	20	20	45
15	EtOH	3	5	40	67

^{*a*}1 mmol of **1a**, and 1 mL of solvent were employed.

^{*b*}Molar ratio of acetone vs. **1a**.

^cCatalyst amount (mol %) based on **1a**.

^{*d*}Reaction temperature.

^eIsolated yields of **3a** based on **1a**.

S2 Original ¹H NMR spectra of benzaldehyde in mechanism study experiments

Instruction: The original spectra were given here to confirm that the chemical shifts of aldehyde-H were referred to the internal standard Me₄Si at 0 ppm. Although the solubility of *L*-proline was low in CDCl₃, it obviously affected the chemical shift of the aldehyde-H, which moved to the low field region (from 10.028 ppm to 10.030 ppm).

S3.1 Without *L*-proline (CDCl₃, 400 MHz; aldehyde-H at 10.028 ppm; Me₄Si at 0 ppm)

S3.2 After adding *L*-proline (CDCl₃, 400 MHz; aldehyde-H at 10.030 ppm; Me₄Si at 0 ppm)

S3.3 Without *L*-proline (Methanol-D₄, 400 MHz; aldehyde-H at 9.989 ppm; Me₄Si at 0 ppm)

S3.4 After adding *L*-proline (Methanol-D₄, 400 MHz; aldehyde-H at 9.992 ppm; Me₄Si at 0 ppm)

S3 GC data and spectra of the polymer absorption test

S3.1 GC analysis data of the sample PhCHO/EtOH without polymer 8 1st time

10000	1.195						
0-11	1	2	3	4	5	6	min

	Retention	Peak		Peak area	PhCHO /
Compound	time/min	wide/min	Peak area	%	EtOH
PhCHO	1.195	0.0373	793.18103	4.77037	0.05000
EtOH	0.645	0.0319	18318.2	95.22963	0.03009

3rd time

Average:					0.05009
EtOH	0.645	0.0318	18123.6	95.23056	0.05008
PhCHO	1.194	0.0361	769.51642	4.76944	0.05008
Compound	time/min	wide/min	Peak area	%	EtOH
	Retention	Peak		Peak area	PhCHO /

S3.2 GC analysis data of the sample PhCHO/EtOH after adding polymer 8 1st time

S4 NMR Spectra of the products

_CN

S46

S49

