Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Supplementary

Synthesis of sustainable lignin-derived mesoporous carbons for

supercapacitor by nano-sized MgO template coupled with Pluronic

F127

Yaoguang Song, Junli Liu*, Kang Sun, Wei Xu

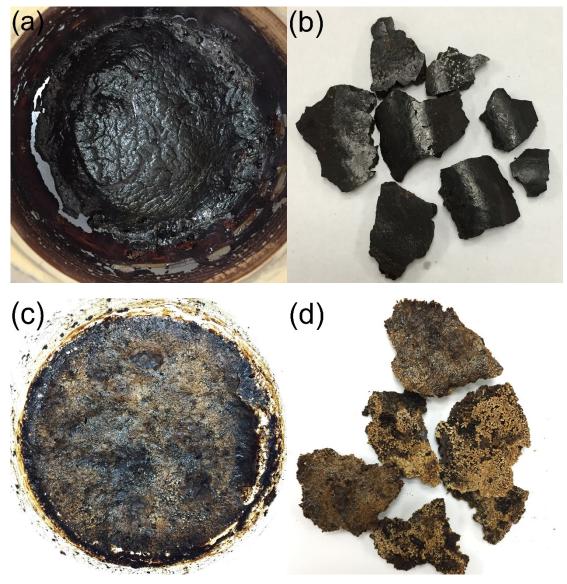


Fig. S1 (a, b) Homogeneous chocolate-like dried precursors composite via dual templating method; (c, d) sample LMC_{MgO} before carbonization

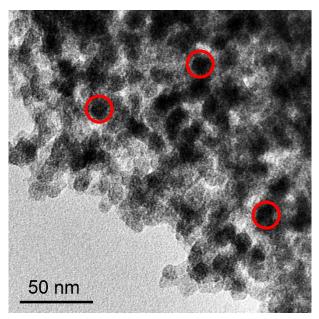


Fig. S2 TEM micrograph for $LMC_{10-1-16}$ before MgO extraction

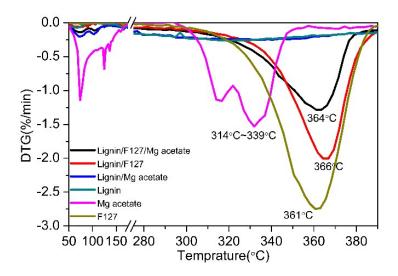


Fig. S3 Derivative thermogravimetric curves of lignin, templates and mixtures of

precursor

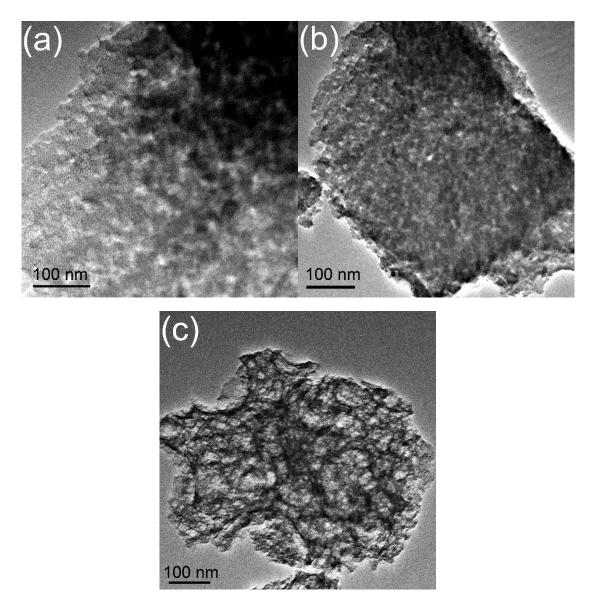


Fig. S4 TEM micrographs for (a) LMC_{MgO} , (b) LC, and (c) $LMC_{10-8-16, F}$

The peak intensity of D band and G band, as well as its corresponding I(D)/I(G), for LMC_{F127}, LMC_{MgO}, LMC₁₀₋₈₋₁₆, LMC₁₀₋₈₋₁₆, v and LMC₁₀₋₈₋₁₆, F were obtained from Raman spectra, respectively. Details for the I_D/I_G value are listed in Table S1.

Sample	I(D)	I(G)	I(D)/I(G)
LMC _{F127}	44.01	42.84	1.027
LMC _{MgO}	39.37	37.05	1.063
LMC ₁₀₋₈₋₁₆	60.73	59.76	1.016
LMC _{10-8-16, V}	19.64	19.95	0.985
LMC _{10-8-16, F}	28.32	28.78	0.984

Table S1 I(D), I(G) and corresponding I(D)/I(G) for obtained carbons

times -	LMC _{F127}		LMC_{MgO}		LMC ₁₀₋₈₋₁₆		LMC _{10-8-16, V}		LMC _{10-8-16, F}	
	С%	О%	С%	O%	С%	O%	С%	О%	С%	0%
1st	85.54	14.46	82.15	17.85	85.91	14.09	87.17	12.85	83.60	16.40
2nd	82.41	17.59	75.55	24.45	81.50	18.50	74.81	25.19	77.43	22.57
3rd	81.65	18.35	78.40	21.60	79.47	20.53	83.88	16.12	82.28	17.72
4th	86.20	13.80	82.74	17.26	84.83	15.17	87.48	12.52	83.27	16.73
average	83.95	16.05	79.71	20.29	82.93	17.07	83.34	16.66	81.64	18.36

Table S2 Surface oxygen content of XPS measurements for obtained carbons

Cyclic voltammetry (CV) data of LMC_{F127} , LMC_{MgO} , $LMC_{10-8-16}$, $LMC_{10-8-16, V}$ and $LMC_{10-8-16, F}$ was obtained at different scan rates ranging from 5 to 100 mv/s within the potential window of 0 to 0.8 V.

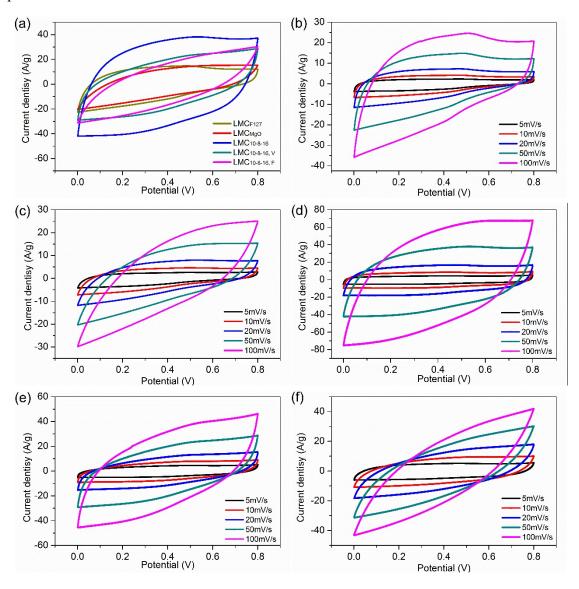


Fig. S5 Electrochemical performance of carbons determined in a three-electrode configuration: cyclic voltammograms: (a) at 50 mv/s scan rate, of (b) LMC_{F127}, (c) LMC_{Mg0}, (d) LMC₁₀₋₈₋₁₆, (e) LMC₁₀₋₈₋₁₆, v, and (f) LMC₁₀₋₈₋₁₆, F.

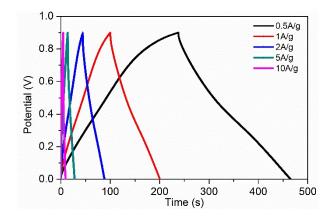


Fig. S6 Galvanostatic charge/discharge curves at different current densities ranging

from 0.5 A/g to 10 A/g for $LMC_{\rm 10\mathchar`embed{B}-16}$