1

Electronic Supplementary Information

An electrochemical MIP sensors for selective detection of salbutamol based on a graphene/PEDOT:PSS modified screen-printed carbon electrode

Decha Dechtrirat^{a,*}, Bunyarithi Sookcharoenpinyo^b, Pongthep Prajongtat^a, Chakrit Sriprachuabwong^{a,c}, Arsooth Sanguankiat^d, Adisorn Tuantranont^c, Supa Hannongbua^b

^a Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok, Thailand ^b Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand

 ^c National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
 ^d Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen campus, Nakhon Pathom, Thailand

* Corresponding author. Tel.: +66 2 562 5555; Fax: +66 2 942 8290.
 E-mail address: fscidcd@ku.ac.th

Scheme S1 Schematic illustration for electrochemical determination of salbutamol using an electrochemical MIP sensor.

Fig.S1 (A) Partial ¹H-NMR spectra (500 MHz, DMSO-d₆) from the titration of salbutamol with 3-aminophenylboronic acid. (B) Observed (magenta square) and calculated (blue circle) values for the ¹H-NMR binding study of salbutamol and 3-aminophenylboronic acid.

Interaction energy = -172.17883747 kJ/mol

Fig.S2 The optimized geometry of the possible salbutamol/aminophenylboronic acid complex and its interaction energy obtained by a computational simulation.

Fig.S3 TEM image of graphene/PEDOT:PSS nanocomposite.

Fig.S4 SEM images of (A) bare SPCE and (B) graphene/PEDOT:PSS modified SPCE.

Fig.S5 Cyclic voltammograms of 5 mM $K_3[Fe(CN)_6]/K_4[Fe(CN)_6]$ in 100 mM KCl at bare SPCE and graphene/PEDOT:PSS modified SPCE.

Fig.S6 Cyclic voltammograms for electrochemical polymerization of the imprinted film on graphene/PEDOT:PSS modified SPCE.

Fig.S7 (a) Differential pulse voltammograms of MIP/SPCE recorded in 5 mM $K_3[Fe(CN)_6]/K_4[Fe(CN)_6]$ after incubation in different concentrations of salbutamol, (b) Calibration curve of the MIP/SPCE. The error bars represent the standard deviation obtained from 6 independent measurements.

Template/Monomer	$K_{a} (M^{-1})$
Salbutamol/3-Aminophenylboronic acid	$291\pm4\%$
Salbutamol/Scopoletin	$30 \pm 2\%$
Salbutamol/Resorcinol	$16 \pm 3\%$
Salbutamol/o-Phenylenediamine	-*

 Table S1 Association constants of the template molecule with monomers

* very small

	1	1	1	1
Electrode material	Detection method	LOD	Linear range	Reference
GP-PEDOT:PSS/SCPE	CV	1.25 μM	5 μM – 550 μM	[1]
NG/ITO	SWV	260 nM	0.17 μM – 6.9 μM	[2]
MnO ₂ /RGO@NF	DPV	23 nM 42 nM – 1.46 μM		[3]
ZrO ₂ -polytaurine/GCE	LSV	20 nM	20 nM 5 μM – 220 μM	
AuNP/GCE	DPSV	20 nM 17 nM – 520 nM		[5]
Poly-ACBK/GO-nafion/GCE	LSV	4.8 nM	7 nM – 125 nM	[6]
Fe ₂ TiO ₅ - CPE	DPAdSV	90 pM	0.2 nM – 25 nM	[7]
Ab-AgPdNPs/Ab-rGO	LSV	4.8 pM	35 pM – 350 nM	[8]
Aptamer/Au	DPA	1.7 pM	0.35 pM – 35 pM	[9]
MIP membrane/SPE	Conductometry	13.5 nM	50 nM – 280 nM	[10]
MIP/Ag-N-RGO/GCE	DPV	7 nM	30 nM – 20 μM	[11]
MIP/SWNTs/GCE	DPV	3 nM	10 nM – 830 nM	[12]
MIPNP-CPE	DPV	0.6 nM	1 nM – 55 nM	[13]
MIP/GP-PEDOT:PSS/SPCE	DPV	0.1 nM	1 nM – 1.2 μM	This work

Table S2 Comparison of reported electrochemical sensors for the determination of salbutamol

Ab: antibody, AgPdNPs: silver-palladium alloy nanoparticle, CS: chitosan, GCE: glassy carbon electrode, CPE: carbon paste electrode, DPAdSV: differential pulse adsorptive stripping voltammetry, DPSV: differential pulse stripping voltammetry, GP: graphene, LSV: linear sweep voltammetry, MIPNP: imprinted nanoparticle, MWNTs: multi-walled carbon nanotubes, NF: nickel foam, NG: nano gold, N-RGO: nitrogen doped reduced graphene oxide, Poly-ACBK: poly(acid chrome blue K), SPE: screen printed electrode, SPCE: screen printed carbon electrode, SWNTs: single walled carbon nanotubes, SWV: square wave voltammetry

	Feed sample			Swine meat		
Method	Spiked (nM)	Found (nM)	Recovery (%)	Spiked (nM)	Found (nM)	Recovery (%)
This work	1,000	990	99.0	1,000	1,027	102.7
HPLC	1,000	1,011	101.1	1,000	1,034	103.4

Table S3 Comparison for determination of salbutamol in real samples using HPLC and the established sensor.

References

- [1] C. Karuwan, C. Sriprachuabwong, A. Wisitsoraat, D. Phokharatkul, P. Sritongkham and A. Tuantranont, *Sens. Actuators B*, 2012, **161**, 549-555.
- [2] R. N. Goyal, M. Oyama and S. P. Singh, J. Electroanal. Chem., 2007, 611, 140-148.
- [3] M. Y. Wang, W. Zhu, L. Ma, J. J. Ma, D. E. Zhang, Z. W. Tong and J. Chen, *Biosens. Bioelectron.*, 2016, 78, 259-266.
- [4] M. Rajkumar, Y. S. Li and S. M. Chen, Colloids Surf. B Biointerfaces, 2013, 110, 242-247.
- [5] X. Y. Lin, Y. N. Ni, S. Z. Li and S. Kokot, Analyst, 2012, 137, 2086-2094.
- [6] X. Lin, Y. Ni and S. Kokot, J. Hazard. Mater., 2013, 260, 508-517.
- [7] A. M. Attaran, M. Javanbakht, F. Fathollahi and M. Enhessari, *Electroanalysis*, 2012, 24, 2013 2020.
- [8] H. Wang, Y. Zhang, H. Li, B. Du, H. Ma, D. Wu and Q. Wei, *Biosens. Bioelectron.*, 2013, 49, 14-19.
- [9] D. Chen, M. Yang, N. Zheng, N. Xie, D. Liu, C. Xie and D. Yao, *Biosens. Bioelectron.*, 2016, 80, 525-531.
- [10] C. Chai, G. Liu, F. Li, X. Liu, B. Yao and L. Wang, Anal. Chim. Acta, 2010, 675, 185-190.
- [11] J. Li, Z. Xu, M. Liu, P. Deng, S. Tang, J. Jiang, H. Feng, D. Qian and L. He, *Biosens. Bioelectron.*, 2017, 90, 210-216.
- [12] W. Xu, P. Liu, C. Guo, C. Dong, X. Zhang and S. Wang, *Microchim. Acta*, 2013, **180**, 1005-1011.
- [13] T. Alizadeh and L. A. Fard, Anal. Chim. Acta, 2013, 769, 100-107.