Supporting Information

Prealamethicin F50 and related peptaibols from Trichoderma arundinaceum

José Rivera-Chávez,^a Huzefa A. Raja,^a Tyler N. Graf,^a Jacklyn M. Gallagher,^a Prashant Metri,^b Ding

Xue,^b Cedric J. Pearce,^c and Nicholas H. Oberlies*a

^aDepartment of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC

27402, USA

^bDepartment of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA

^cMycosynthetix, Inc., Hillsborough, NC 27278, USA

Table of contents

Figure S1 . ¹ H-NMR of compound 1 in DMSO- d_6 recorded at 700 MHz.	\$3
Figure S2 . ¹³ C-NMR of compound 1 in DMSO- d_6 recorded at 175 MHz.	S 4
Figure S3. ¹ H- ¹ H TOCSY spectrum of compound 1 in DMSO- d_6 .	S 5
Figure S4 . ¹ H- ¹ H NOESY spectrum of compound 1 in DMSO- d_6 .	S 5
Figure S5. ¹ H- ¹³ C HSQC spectrum of compound 1 in DMSO- d_6 .	S 6
Figure S6 . ¹ H- ¹³ C HMBC spectrum of compound 1 in DMSO- d_6 .	S 6
Figure S7. Marfey's analysis of compound 1.	S7
Figure S8. HRESIMS of compound 2 showing insource fragmentation.	S 8
Figure S9 . The sequential losses of amino acids for each in-source fragment at m/z 1189.69 (top) and m/z 513.30 (bottom) for compound 2 .	S9
Figure S10. ¹ H-NMR of compound 2 in MeOH- d_3 recorded at 700 MHz	S10
Figure S11. ¹³ C-NMR of compound 2 in MeOH- d_3 recorded at 125 MHz.	S11
Figure S12. ¹ H- ¹ H TOCSY spectrum of compound 2 in MeOH- d_3 .	S12
Figure S13 . ¹ H- ¹ H NOESY spectrum of compound 2 in MeOH- d_3 .	S12
Figure S14. ¹ H- ¹³ C HSQC spectrum of compound 2 in MeOH- d_3 .	S13
Figure S15 . ¹ H- ¹³ C HMBC spectrum of compound 2 in MeOH- d_3 .	S13
Figure S16. HRESIMS of compound 3 showing insource fragmentation.	S14
Figure S17 . The sequential losses of amino acids for each in-source fragment at m/z 1189.69 (top) and m/z 789.45 (bottom) for compound 3 .	S15
Figure S18. ¹ H-NMR of compound 3 in DMSO- d_6 recorded at 700 MHz.	S16
Figure S19. ¹³ C-NMR of compound 3 in DMSO- d_6 recorded at 125 MHz.	S17
Figure S20 . ¹ H- ¹ H TOCSY spectrum of compound 3 in DMSO- d_6 .	S18
Figure S21. ¹ H- ¹ H NOESY spectrum of compound 3 in DMSO- d_6 .	S18
Figure S22 . ¹ H- ¹³ C HSQC spectrum of compound 3 in DMSO- d_6 .	S19
Figure S23 . ¹ H- ¹³ C HMBC spectrum of compound 3 in DMSO- d_6 .	S19
Figure S24. Marfey's analysis of compound 3.	S20
Table S1. NMR Spectroscopic data for compound 2, 3 and 4 (700 and 175 MHz, ¹ H and ¹³ C).	S21

Figure S1. ¹H-NMR of compound **1** in DMSO- d_6 recorded at 700 MHz.

Figure S2. ¹³C-NMR of compound 1 in DMSO- d_6 recorded at 125 MHz.

Figure S3. ¹H-¹H TOCSY spectrum of compound **1** in DMSO- d_6 .

Figure S4. ¹H-¹H NOESY spectrum of compound **1** in DMSO-*d*₆.

Figure S5. ¹H-¹³C HSQC spectrum of compound **1** in DMSO- d_6 .

Figure S6. ¹H-¹³C HMBC spectrum of compound **1** in DMSO- d_6 .

Figure S7. Marfey's analysis of compound 1.

Figure S8. HRESIMS of compound 2 showing insource fragmentation.

Figure S9. The sequential losses of amino acids for each in-source fragment at *m/z* 1189.69 (top) and *m/z*513.30(bottom)forcompound2.

Figure S10. ¹H-NMR of compound **2** in MeOH- d_3 recorded at 700 MHz.

Figure S11. ¹³C-NMR of compound **2** in MeOH- d_3 recorded at 125 MHz.

Figure S12. ¹H-¹H TOCSY spectrum of compound **2** in MeOH-*d*₃.

Figure S13. ¹H-¹H NOESY spectrum of compound **2** in MeOH-*d*₃.

Figure S14. 1 H- 13 C HSQC spectrum of compound **2** in MeOH- d_{3} .

Figure S15. ¹H-¹³C HMBC spectrum of compound **2** in MeOH- d_3 .

Figure S16. HRESIMS of compound 3 showing insource fragmentation.

Figure S17. The sequential losses of amino acids for each in-source fragment at m/z 1189.69 (top) andm/z789.45(bottom)forcompound3.

Figure S18. ¹H-NMR of compound **3** in DMSO- d_6 recorded at 700 MHz.

Figure S19. ¹³C-NMR of compound **3** in DMSO- d_6 recorded at 125 MHz.

Figure S20. ¹H-¹H TOCSY spectrum of compound **3** in DMSO-*d*₆.

Figure S21. ¹H-¹H NOESY spectrum of compound **3** in DMSO- d_6 .

Figure S22. ¹H-¹³C HSQC spectrum of compound **3** in DMSO- d_6 .

Figure S23. ¹H-¹³C HMBC spectrum of compound **3** in DMSO- d_6 .

Figure S24. Marfey's analysis of compound 3.

			2	3 ª			4		
position	δς	type	δ_{H} , mult. (J in Hz)	δς	type	δ_{H} , mult. (J in Hz)	δς	type	δ_{μ} , mult. (J in Hz)
Ac		-71		- 0	-71			-71	
	172 5	c		170.2	c		172 F	c	
C=0	172.5	C CU	2.05	170.2		1.00	172.5	C	2.05
CH3	22.4	CH3	2.05, s	223	CH3	1.99, s	22.5	CH3	2.05, \$
Aib		_			_			_	
C=0	175.5	С		173.5	С		175.5	С	
α	57.5	С		55.6	С		57.4	С	
в	23.8	CH₃	1.46, s	23.4	CH₃	1.38, s	23.8	CH₃	1.46, s
γ	26.9	CH₃	1.54, s	25.6	CH₃	1.43, s	26.6	CH₃	1.53, s
NH			8.62			8.81, s			8.63 <i>, s</i>
Pro ²									
C=0	175.5	С		173.8	С		175.6	С	
α	65.7	CH	4.25, t (8.3)	63.8	CH	4.12, t (8.5)	65.7	CH	4.25, t (8.4)
β1	29.7	CH ₂	1.80, <i>m</i>	28.1	CH ₂	1.67, <i>m</i>	29.7ª	CH ₂	1.80, <i>m</i>
β,			2.36. m			2.26. m			2.34. m
V ₁	27.1	CH	1.96. <i>m</i>	25.8	CH	1.87. m	27.1	CH	1.96. <i>m</i>
V ₂		- 2	2.08. m		- 2	1.99. <i>m</i>		- 2	2.08. m
δ.	50.0	CH	3.49. td (10.5. 6.2)	48.3	CH	3.43. m	50.0	CH	3.49. td (5.6. 9.8)
δ_1	5010	0.12	3 95 m	1015	0.12	3 83 m	5010	0.12	3 95 m
			5.55,			5165,111			5155,111
<u> </u>	179 5	c		175.6	c		179 5	C	
C_0	57.4	c		173.0	c		178.5	c c	
a e	37.4		1 54 6	33.7	C	1.42 c	37.4		154 c
U	23.2		1.34, 5	22.7		1.43, 5	23.1		1.54, 5
γ	27.4	CH3	1.55, 5	26.5	CH3	1.4/,5	27.4	CH3	1.50, 5
NH			/.b3, S			1.57, 5			7.62, S
Ala"	· ·								
C=0	177.4	С		175.7	C		177.2	С	
α	54.1	CH	4.02, m	52.0	CH	3.91 <i>, m</i>	54.1	CH	4.09, qd (7.7, 5.6)
в	17.1	CH₃	1.49, d (7.7)	16.5	CH₃	1.41, <i>d</i> , (overlapped)	17.1	CH₃	1.49, d (7.7)
NH			7.56 <i>, d</i> (5.8)			7.74, d (3.9)			7.55, d (5.6)
Aib⁵									
C=0	177.8	С		176.2	С		177.8	С	
α	57.3	С		55.5	С		57.3	С	
в	23.1	CH₃	1.54, s	22.5	CH₃	1.44, s	23.1	CH₃	1.54, s
Y	27.1	CH₃	1.56, s	26.3	CH₃	1.45, s	27.1	CH₃	1.56, s
NH			7.92, s			7.83, s			7.94, s
Ala ⁶									
C=0	178.2	с		175.0	с		178.2	с	
α	54.1	CH	4.10. <i>m</i>	51.6	CH	3.96. <i>m</i>	54.1	СН	4.02. <i>m</i>
в	17.0	CH ₂	1.53. d (overlapped)	16.4	CH ₂	1.38. d (overlapped)	17.0	CH ₂	1.53. d (overlapped)
NH			7.91. brs		e 5	7.57. brs (overlapped)			7.92. brs
Gln ⁷			- /						. ,
C=0	175.8	C		173.6	C		175.8		
a	58.0	СН	3.92 m	56.2	СН	3 79 <i>m</i>	58.1	СН	3 92 m
в.	27.1	CH.	2 14 m	25.9	CH.	1 97 <i>m</i>	27.1	CH.	2 14 m
в.	2/12	0.12	2.27 m	2010	0.12	2.06 m	2/12	0.12	2 27 m
0 ₂	32.6	CH.	2.27,111	31.0	CH.	2.00, m	32.6	CH.	2.27, m
Y1	52.0	CH2	2.55 2.55 2.55	51.0	CH2	2.14, 11	52.0	CH2	2.54, 11
¥2			2.35, 000 (14.9, 9.8,			2.28, m			2.54, ddd (15.4, 9.8, 5.4)
s	177.2	c	5.4)	172.1	c		177.2	c	
	177.5	C	7.09 d (4.9)	1/5.1	C	7.92 hrs	177.5	C	7.00 d(4.0)
			7.98, U (4.8)			7.65, DIS			7.99, U (4.9)
0-INH2			6.76, Drs			6.74, Drs			6.77, Drs
A:L8			7.44, Drs			1.11, Drs			7.44, Drs
AID	470.0	6		475 4	6		470.0	6	
C=0	1/8.2	L C		1/5.4	L C		1/8.2	L C	
α	57.6	C and		55.8	C		57.6	C	4.55
в	23.4	CH ₃	1.51, s	22.8	CH₃	1.40, s	23.3	CH₃	1.52, s
Y	27.3	CH₃	1.55, s	26.5	CH₃	1.41, s	27.4	CH₃	1.55, s
NH			8.06, s			7.78, s			8.09, s
Val ⁹									
C=0	175.3	С		173.0	С		175.3	С	
α	65.7	СН	3.60, <i>m</i>	62.4	СН	3.66, <i>m</i>	65.7	СН	3.58, m
в	30.5	CH	2.23, m	28.7	CH	2.20, m	30.4	CH	2.25, m
Y	19.6	CH₃	1.00, <i>d</i> (6.8)	19.1	CH₃	0.88 <i>, d</i> (6.5)	19.6	CH₃	1.00, d (7.0)
δ	20.7	CH₃	1.12, d (6.8)	19.4	CH₃	1.01, d (6.5)	20.9	CH₃	1.14, d (7.0)
NH		-	7.47, d (5.1)		-	7.26, d (6.1)		-	7.49, d (4.9)
Aib ¹⁰									
C=0	179.0	С		175.9	С		179.0	С	
α	57.7	С		55.8	С		57.6	С	
в	26.8	CH ₂	1.54.5	22.8	CH-	1.41.5	26.8	CH ₂	1.54.5
- V	27.1	CH ₂	1.56.5	25.7	CH ₂	1.43.5	27.1	CH ₂	1.56. s
, NH	-/.1	3	8 19 s	_3.7	3	798 \$	-/.1	3	8.23 ¢
Glv ¹¹			0.10, 0			7.55,5			0.20, 0
C=0	172 0	C		160 6	C		172 0	c	
c_0 a	1/2.9	с сн	3.66 m	0.601	CH CH	3 51 m	1/5.U /E 1	CH CH	3 66 m
a1 a	45.0		2.00, III	43.6		2.31,111 2.74 m	45.1		2.00, III
α ₂			3.93, M			3./4, M			3.93, M
INFI			8.31, DIT (6.2)			8.13, DIT (5.2)			8.34, <i>DT</i> (6.3)

Table S1. NMR Spectroscopic data for compound 2, 3 and 4 (700 and 175 MHz, ¹H and ¹³C)

Leu ¹²									
C=0	175.8	С		173.3	С		175.8	С	
α	54.1	CH	4.47, m	51.5	СН	4.29, <i>m</i>	54.1	СН	4.47, ddd (10.5, 7.0, 3.5)
в.	41.6	CH	1.59. <i>m</i> (overlapped)	40.1	CH ₂	1.49. m (overlapped)	41.5	CH	1.59. m (overlapped)
в.		2	1 96 m		2	1 79 m		<u>2</u>	1 96 m
02	25.6	сц	1.50,	24.0	сц	1.75, m	25.7	сц	1.91 m
Ŷ	23.0	CII		24.0			23.7		1.51, 11
0	21.2	CH ₃	0.89, d (6.5)	20.9	CH ₃	0.82, 0 (6.4)	21.3	CH ₃	0.92, d (6.3)
ε	23.6	CH₃	0.91, d (6.5)	22.8	CH₃	0.87 <i>, d</i> (6.9)	23.4	CH₃	0.94, d (6.3)
NH			8.07, d (overlapped)			7.72, d (7.8)			8.11, d (7.7)
Aib ¹³									
C=0	174.9	С		172.9	С		174.9	С	
α	58.1	С		55.9	С		58.1	С	
ß	23.8	CH.	157 s	25.8	CH.	1.40 s	23.7	CH.	161 s
U	25.0		1.57,5	20.0		1.40,5	25.7		1.51,5
Y	20.8	CI13	1.55, 3	23.1		1.45, 3	20.7		1.34, 3
NH			8.24, 5			8.16, 5			8.41, 5
Pro ¹⁴									
C=0	175.8	С		173.4	С		176.4	С	
α	64.6	CH	4.42, t (8.5)	62.6	CH	4.27, dd (7.5, 6.8)	64.7	CH	4.39, dd (9.1, 6.3)
β1	29.7	CH ₂	1.80, <i>m</i>	28.5	CH ₂	1.66, <i>m</i>	30.0	CH ₂	1.80, <i>m</i>
B.		-	2 36 m		-	2 22 m		-	2 32 m
0 ₂	27.0	CH.	1 98 m	25.7	CH.	1.88 m	26.9	CH.	1 99 m
¥1	27.0	CH2	2.08 m	25.7	CH2	1.00, 11	20.5	CH2	2.09 m
<i>γ</i> ₂		~	2.08, 11			2.52	50.0		2.08, 11
01	50.5	CH ₂	3.58, m	48.5	CH ₂	3.53, m	50.6	CH ₂	3.75, m
δ_2			3.93, m			3.72, m			3.87, dt (11.2, 5.6)
Val ¹⁵									
C=0	174.1	С		173.1	С		175.3	С	
α	62.2	СН	3.96, <i>m</i>	61.2	СН	3.69, <i>m</i>	64.3	СН	3.74, <i>m</i>
в	32.6	СH	2 39 m	28.7	СН	2 22 m	30.5	СН	2 34 m
	10.6	CLI	1.00 d (6.7)	19.0	CLI	0.99 d (6.7)	10.5		0.98 d(7.0)
Ŷ	19.0		1.00, d (0.7)	10.5		0.88, 0 (0.7)	19.5		0.38, <i>u</i> (7.0)
0	19.7	CH3	1.08, 0 (6.8)	19.2	CH3	0.96, 0 (6.7)	20.2	CH3	1.07, a (7.0)
NH			7.84, d (8.0)			7.54 <i>, d</i> (8.5)			7.64, d (8.4)
Aib ¹⁶									
C=0	175.5	С		175.5	С		177.6	С	
α	58.1	С		56.0	С		57.6	С	
в	23.4	CH2	1.54. s	23.0	CH₂	1.36 s	23.4	CH₂	1.54. s
V	27.1	CH.	155 s	26.4	CH.	1 40 s	27.4	CH.	155 s
	27.1	CII3	7.59 c	20.4	CH3	7.52 c	27.4	C113	7.60 c
A:L17			7.36, 3			7.55, 5			7.00, 3
AID ²⁷	476.0								
0=0	1/6.3	C		175.6	C		1/8./	C	
α	58.1	С		56.0	С		57.7	С	
в	23.4	CH₃	1.48, s	23.1	CH₃	1.49, s	23.4	CH₃	1.53, s
Y	27.1	CH₃	1.50, s	26.5	CH₃	1.47, s	27.4	CH₃	1.55, s
NH			7.31, s			7.53, s			7.82, s
Gln/Glu ¹⁸									· · · · · ·
C=0	177 8	C		171.6	C		175 5	C	
a 0	55.6	СН	1 21 m	54.2	СН	3 90 <i>m</i>	57.0	СН	402 m
a a	27.1		1.06 m	36.0		3.06 m	28.0		4.02, m
$0_1, 0_2$	27.1		1.96, 11	20.0		2.06, ///	28.0		2.25,111
Y 1	33.0	CH ₂	2.23, m	30.0	CH ₂	2.50, m (overlapped)	33.2	CH ₂	2.43, dt (16.1, 8.4)
Y2			2.30 <i>, m</i>			2.57, m			2.62, ddd (15.4, 9.1, 6.3)
δ	179.0	С		172.8	С		177.6	С	
NH			7.35, d (7.4)			7.59, d (6.0)			7.79, d (5.6)
δ -NH ₂			6.63, brs			-			6.79, brs
			7.57, brs			-			7.44, brs
δ-OMe	-		-	51.2	CH	3.57. s	-		-
Gln ¹⁹					3				
<u> </u>				170.0	c		174.0	c	
<u> </u>	-			170.9	C C I	2.07	1/4.0		4.15
α	-		-	53.5	CH	3.97, m	55.7	CH	4.15, <i>m</i>
в	-		-	26.9	CH ₂	1.76, m	28.0	CH ₂	2.02, m
						1.85, m			
Y 1	-		-	31.6	CH ₂	1.98, m	32.9	CH_2	2.20, m
Y 2			-			2.10, <i>m</i>			2.34, m
δ	-		-	173.3	С	-	177.3	С	•
NH			-			7.49. d (7.9)	· · · ·		7,88, d (7.0)
δ-NH			_			6.67 brs			6.63 brs
0 1112						7.04 brc			7 3/ brc
Dh = = 120			~			7.07, 013			1.34,013
PREOF				60 G	<u> </u>			<u></u>	2.66
<u>сн₂</u> –Он	-		-	62.9	CH ₂	3.33, overlapped	64.9	CH ₂	3.61, brs
α	-		-	52.3	CH	3.89, <i>m</i>	54.5	CH	4.15, m
$\boldsymbol{\theta}_{1}$	-		-	36.7	CH_2	2.54, dd (overlapped)	38.0	CH ₂	2.73, dd (14.0, 9.1)
β2			-			2.91, dd (13.7, 4.7)			2.94, dd (14.0, 5.6)
V	-		-	139.0	С		139.8	С	
δ	-		-	129.2	СН	7.23. dd (8 1 1 2)	130.4	CH	7.28. d (7 7)
£	_		-	127.0	CH	7 20 + (7 6))	170.1	CH	7 22 + (7 7)
7	-		~	127.3	CH	7 12 ++ (5 5 1 5)	123.1	CH	7.22, ((7.7)
ς	-		-	125.8	CT	7.15, (L (0.0, 1.5)	127.1	CH	7.14, ((7.7)
NH			-			6.96 <i>, d</i> (9.0)			7.32, d (9.1)
CH₂- <u>OH</u>						4.61, t (5.9)			-

^aRecorded in DMSO- d_{6r} the chemical shifts for methyl groups in Aib residues may be exchangeable.