Supporting information

Synthesis of CrO_x/C catalyst for low temperature NH₃-SCR with enhanced regeneration ability in the presence of SO₂

Shuohan Yu^{a,b}, Sheng Xu^c, Bowen Sun^{a,b}, Yiyang Lu^{a,b}, Lulu Li^{a,b}, Weixin Zou ^{a,b}, Peng Wang^c, Fei Gao^{*a,b}, Changjin Tang^{a,b}, Lin Dong^{*a,b}

- ^{a.} Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
 - Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China
- ^{c.} National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

Band energy calculation of metal-oxygen band in Cr₂O₃ and MnO₂

Due to the ligancy of Cr in Cr_2O_3 is 6, each Cr_2O_3 unit have 12 Cr-O bands, and thus the enthalpy of Eq. 1 equals 12 times of Cr-O band energy.

$$Cr_2O_3 \to 2Cr_{(g)} + 3O_{(g)} \tag{1}$$

Eq. 1 can be depicted as $2 \times \text{Eq. } 3+3/2 \times \text{Eq. } 4$ -Eq. 2.

$$2Cr_{(s)} + 3/2O_{2(g)} \rightarrow Cr_2O_3 \qquad (2)$$

$$Cr_{(s)} \rightarrow Cr_{(g)} \qquad (3)$$

$$1/2O_{2(g)} \rightarrow O_{(g)} \qquad (4)$$

Enthalpies of Eq. 2-4 are formation enthalpy of $\operatorname{Cr}_2\operatorname{O}_3 \Delta H_f(Cr_2O_3)$, vaporization enthalpy of Cr solid $\Delta H_{vap}(Cr)$, and formation enthalpy of oxygen atom $\Delta H_f(O)$, respectively. Therefore, band energy of Cr-O band E_{Cr-O} can be expressed as Eq. 5.

$$E_{Cr-O} = \frac{2 \times \Delta H_{vap}(Cr) + 3 \times \Delta H_f(O) - \Delta H_f(Cr_2O_3)}{12}$$
(5)

Analogously, band energy of Mn-O band in MnO₂ E_{Mn-O} can be expressed as Eq. 6.

$$E_{Mn-O} = \frac{\Delta H_{vap}(Mn) + 2 \times \Delta H_f(O) - \Delta H_f(MnO_2)}{6}$$
(6)

Metal	Sulfating propage	Gibbs free energy	Melting point
oxide	Sunating process	(kJ/mol) ^a	(°C)
Cr ₂ O ₃	$2Cr_2O_3 + 6SO_2 + 3O_2 \rightarrow 2Cr_2(SO_4)_3$	-1139.54	2435
CoO	$2CoO + 2SO_2 + O_2 \rightarrow 2CoSO_4$	-463.265	1933
Fe ₂ O ₃	$2Fe_2O_3 + 6SO_2 + 3O_2 \rightarrow 2Fe_2(SO_4)_3$	-1070.86	1539
CuO	$2CuO + 2SO_2 + O_2 \rightarrow 2CuSO_4$	-409.611	1326
MnO ₂	$MnO_2 + SO_2 \rightarrow MnSO_4$	-172.871	535

Table S1. Thermochemical data of some metal oxide.

^a Thermodynamic data was obtained from Lange's Chemistry Handbook Version 13th.

Samples	CrO _x /C-450		Cr ₂ O ₃ /C-WI			
Reaction temperature (°C)	125	150	175	125	150	175
[NO] _{out}	453	409	343	489	467	421
NO conversity (%)	9.32	18.1	31.2	2.15	6.46	15.7

Table S2. Kinetics data of NH₃-SCR on $CrO_x/C-450$ and Cr_2O_3/C -WI catalysts.

concentration was maintained at 500 ppm.						
Reaction						
temperature	125		150		175	
(°C)						
Feed gas content (ppm)	[NO] _{in}	[NO] _{out}	[NO] _{in}	[NO] _{out}	[NO] _{in}	[NO] _{out}
	205	183	205	167	205	151
CrO _x /C-450	146	133	146	120	146	100
	88	78	88	71	88	62
	128	125	128	119	128	108
Cr ₂ O ₃ /C-WI	63	60	63	55	63	41
	215	212	215	207	215	194

Table S3. Kinetics data of NH_3 -SCR on CrO_x/C -450 and Cr_2O_3/C -WI catalysts, when NH_3

concentration was maintained at 500 ppm.

concentration was maintained at 500 ppm.						
Reaction						
temperature	125		150		175	
(°C)						
Feed gas content (ppm)	[NO] _{in}	[NO] _{out}	[NO] _{in}	[NO] _{out}	[NO] _{in}	[NO] _{out}
	178	162	178	145	178	122
CrO _x /C-450	111	100	111	86	111	66
	55	47	55	38	55	26
	140	133	140	120	140	97
Cr ₂ O ₃ /C-WI	60	56	60	45	60	31
	212	204	212	187	212	160

Table S4. Kinetics data of NH_3 -SCR on CrO_x/C -450 and Cr_2O_3/C -WI catalysts, when NO

concentration was maintained at 500 ppm.

Metal oxide	Cr ₂ O ₃	MnO ₂
Formation enthalpy of metal oxide (kJ/mol) ^a	-1134.97	-520.15
Vaporization enthalpy of metal solid (kJ/mol) ^a	397.58	280.81
Formation enthalpy of oxygen atom (kJ/mol) ^a	249.	23
Band energy of metal-oxygen band (kJ/mol)	223.15	216.57

Table S5. Band energy calculation of metal-oxygen band in Cr_2O_3 and MnO_2 .

^a Thermodynamic data was obtained from Lange's Chemistry Handbook Version 13th.

catalysts	Metal sulfate	$m_{M^{n+}} (\mathrm{mg/L})$	m_{MSO_4} (mg)
MnO ₂	MnSO ₄	34.4	4.7
CrO _x /C-450	$Cr_2(SO_4)_3$	0	0

 Table S6. Mass of metal sulfate formed on catalysts.

S _{total} (%)	N _{total} (%)	NH ₃ (%)	NH ₄ ⁺ (%)
2.69	3.63	1.08	2.55

Table S7. Surface atomic concentration of SO_2 poisoned CrO_x/C -450 sample.

Figure S1. NH₃-SCR activity of catalysts derived from MIL-101 and Cr₂O₃: (a) NO conversion,

(b) N_2 selectivity, and (c) water tolerance of $CrO_x/C-450$.

Figure S2. (a, b) Kinetics curves of NH₃-SCR on Cr₂O₃/C-WI catalysts: (a) NO concentration was maintained at 500 ppm, (b) NH₃ concentration was maintained at 500 ppm, and (c, d)
Kinetics curves of NH₃-SCR on CrO_x/C-450 (a) NO concentration was maintained at 500 ppm,

(b) NH₃ concentration was maintained at 500 ppm.

Figure S3. XRD patterns of catalysts.

Figure S4. (a) FTIR and (b) Raman profiles of catalysts and MIL-101.

Figure S5. (a) TEM image of MIL-101, (b) HAADF image of regenerated CrO_x/C-450 catalyst,

(c) TEM image of bulk Cr_2O_3 , and (d) TEM image of Cr_2O_3/C -WI.

Figure S6. (a) NH₃-TPD, and (b) O_2 -TPD profiles of CrO_x/C -450 and Cr_2O_3 .

Figure S7. XPS spectra of SO₂ poisoned CrO_x/C-450 catalyst: (a) S2p, and (b) N1s.