Supporting Information

Experimental Section

All reagents were commercially available, of reagent grade and used without further purification.

Preparation of the WO₃/BiVO₄/MeO_x photoanodes

The WO₃/BiVO₄ photoelectrode was prepared on an F-doped SnO₂ conductive glass (FTO) substrate (Nippon Sheet Glass Co., Ltd.) via spin coating. Typically, *N*,*N*-dimethylformamide (DMF) solutions of tungsten hexachloride (WCl₆), adjusted to 504 mM, was coated onto the FTO via spin coating (1000 rpm, 15 s) and the film then calcined at 500°C for 30 min. Then, the WO₃ layers were coated using WCl₆, adjusted to 252 mM, resulting in the formation of a WO₃ underlayer.

A mixed solution of 0.5 M bismuth oxide solution (0.4 mL) and 0.4 M vanadium oxide solution (0.5 mL) of enhanced metal–organic decomposition (EMOD) materials (Symetrix Co., USA), butyl acetate (2.1 mL) and 10 wt% ethylcellulose (2.0 mL) as a thickener and aggregation inhibition agent was coated on the WO₃ underlayer via spin coating (500 rpm, 15 s). Then, the film was calcined at 550°C for 30 min to form the WO₃/BiVO₄ photoelectrodes. The thickness of WO₃ and BiVO₄ were *ca.* 150–200 nm and 100–200 nm, respectively.²⁸

The introduction of MeO_x onto the WO₃/BiVO₄ was performed via the same spin coating method (1000 rpm, 15 s) using EMOD materials (60 mM) of various metal precursors solved in butyl acetate containing ethylcellulose. After spin coating, the film was calcined at 550°C for 30 min to form WO₃/BiVO₄/MeO_x.

The AI_2O_3 particle for N_2 adsorption–desorption measurement was prepared by evaporating and calcining AI_2O_3 of EMOD solved in butyl acetate containing ethylcellulose in the same condition.

Characterisation

The photoanodes were characterised using scanning electron microscopy (SEM, Hitachi, Ltd., S-4800), Xray diffraction (XRD, PANalytical, EMPYREAN) and X-ray fluorescence spectroscopy (XRF, Rigaku, ZSXmini). The pore size of Al_2O_3 was calculated by N_2 adsorption-desorption measurement using a BELSORP-mini II (MicrotracBEL Corp) at 77 K. The light harvesting efficiency (LHE) was calculated from Equation (S1) using UV-vis spectroscopy (JASCO, V-570, ISN-470).

$$LHE = 1 - \% R - \% T$$
 (S1)

where %*R* and %*T* represent the reflectance and transmittance, respectively; these values were obtained from the UV-vis measurements.

Photoelectrochemical production of H₂O₂

1. Photoelectrochemical properties

The photoelectrochemical performance of the photoanodes was measured using an electrochemical analyser (BAS. Inc., ALS660B) and a solar simulator (SAN-EI ELECTRIC Co., XES-151S) calibrated to AM-1.5 (1 sun, 100 mW cm⁻²) with a spectroradiometer (SOMA Optics, Ltd.). The irradiation area (0.28 cm²) was limited using a black mask. The simulated solar light was applied from the semiconductor side.

The current–voltage (*I–V*) characteristics were studied using a one-compartment cell comprising a photoanode equipped with a back reflection plate as the working electrode; an Ag/AgCl electrode as the reference electrode; and a Pt mesh as the counter electrode at a low scan rate (50 mV s⁻¹). Aqueous solution of 0.5 M KHCO₃, adjusted to pH 7.3 by CO₂ bubbling, were utilised as electrolytes.

3. Simultaneous production and/or accumulation of H_2O_2 and H_2 from H_2O as the raw material

The simultaneous production and accumulation of H_2O_2 and H_2 was performed under CO_2 bubbling with a Pt mesh as a cathode and a two-compartment cell, equipped with a Nafion membrane (thickness: 0.0035 in) as an ion-exchange membrane, between the anode and

cathode. Aqueous solutions (anode: 35 mL; cathode: 35 mL) of 0.1–2.0 M KHCO₃ (pH 6.9–7.7) were utilised as electrolytes. In the photoelectrochemical production of H_2O_2 and H_2 , using a two-compartment cell, photoanodes of sizes 1.2 cm × 5.5 cm were used without a black mask.

The quantification of H_2O_2 in the liquid phase was performed using two different colorimetry methods by a reductive reaction from Ce⁴⁺ to Ce³⁺ and by an oxidative reaction from Fe²⁺ to Fe³⁺ using a microplate reader (Tecan Japan Co., Ltd., infinite M200PRO). The H_2O_2 amount measured in the colorimetry using Fe²⁺ were in close agreement with that in the colorimetry using Ce⁴⁺. The colorimetry using Fe²⁺, which can be easily measured, was used as the main quantification method, as shown in Equation (S2).²⁸⁻³⁰

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + 2OH^-$$
 (S2)

In aqueous solutions of 0.1–0.5 M KHCO₃, 0.1 mL of 0.1 M FeCl₂ in 1.0 M HCl aqueous solution was added to a mixed solution containing 1.0 mL of sample and 0.9 mL of 1.0 M HCl aqueous solution. Then, the H_2O_2 concentration was measured by Fe³⁺ colorimetry (330 nm). In 1.0–2.0 M KHCO₃ aqueous solutions, 0.1 mL of 0.1 M FeCl₂ in 1.0 M HCl was added to a mixed solution containing 1.0 mL of sample and 0.9 mL of 3.0 M HCl aqueous solution. Then, the H_2O_2 concentration was measured by Fe³⁺ colorimetry (330 nm).

The faradaic efficiencies of H_2O_2 ($\eta(H_2O_2)$) can be calculated as shown in Equation (S3), which takes into consideration the reaction shown in Equation (1).

$$\eta(H_2O_2) = (amount of generated H_2O_2) \times 100/(theoretical amount of H_2O_2)$$

= (amount of generated H_2O_2) × 100/(amount of generated electrons/2) (S3)

Fig. S1 SEM images of (a) bare, (b) SiO₂, (c) ZrO_2 , (d) TiO₂, (e) Al₂O₃ and (f) CoOx modified WO₃/BiVO₄ photoanodes.

Fig. S2 XRD spectra of (a) bare, (b) SiO₂, (c) ZrO_2 , (d) TiO₂, (e) Al₂O₃ and (f) CoOx modified WO₃/BiVO₄ photoanodes.

Fig. S3 LHE spectra of (a) bare, (b) SiO_2 , (c) ZrO_2 , (d) TiO_2 , (e) AI_2O_3 and (f) CoOx modified WO₃/BiVO₄ photoanodes.

Fig. S4 Time courses of voltages applied between photoanode and a counter electrode of Pt mesh at steady photocurrent of 1 mA in oxidative H_2O_2 generation reaction shown in Fig. 2 in a 0.5 M KHCO₃ aqueous electrolyte in an ice bath (below 5°C) on WO₃/BiVO₄/MeO_x photoanodes under simulated solar light irradiation.

Fig. S5 I-V curves in an aqueous electrolyte of 0.5 M KHCO₃ on a (a) bare WO₃/BiVO₄ and (b) WO₃/BiVO₄/Al₂O₃ photoanodes under simulated solar light irradiation.

Fig. S6 Pore size distributions of the MeOx particles calculated by the BJH method from N_2 absorption and desorption measurements.

Fig. S7 Oxidative H_2O_2 generation in a 0.5 M KHCO₃ aqueous electrolyte in an ice bath (below 5°C) under simulated solar light irradiation at steady photocurrent of 1 mA on (a) WO₃/BiVO₄ photoanode and WO₃/BiVO₄/Al₂O₃ photoanodes prepared at spin coating number of (b) 500 rpm and (c) 1000 rpm.

Fig. S8 Effect of the voltages applied between a WO₃/BiVO₄/Al₂O₃ photoanode as the working electrode and a Pt mesh as counter electrode using 0.5 M KHCO₃ aqueous solution (35 mL) under CO₂ gas bubbling and simulated solar light irradiation in an ice bath (below 5°C) on oxidative H_2O_2 generation. Applied electric charge (C): (a) 0.9, (b) 1.8 and (c) 3.6.