Electronic Supplementary Information (ESI)

Investigation of membrane condensation induced by CaCO₃ nanoparticles and its effect on membrane protein function

Ke Luo,^a[†] Ki-Baek Jeong,^a[†] Jae-Min Oh,^b Soo-Jin Choi,^c Tae-Joon Jeon,^d and Young-Rok Kim^{*a}

 ^a Graduate School of Biotechnology & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea. Email: youngkim@khu.ac.kr
^b Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju 26493, Korea
^c Department of Applied Food System, Major of Food Science and Technology, Seoul Women's University, Seoul 01797, Korea.
^d Department of Biological Engineering, Inha University, Incheon 22212, Korea † These authors contributed equally to this work.

Fig. S1 The concentration of Ca^{2+} ions dissociated from Bulk and Nano $CaCO_3$. a) Grayscale value curves reflecting the concentration of dissociated Ca^{2+} ions from Nano $CaCO_3$ and Bulk $CaCO_3$. b) Reference curve for quantification of Ca^{2+} ions. Grayscale values were plotted over the corresponding concentrations of Ca^{2+} ions. c) Grayscale values were converted to the concentration of Ca^{2+} ions to show the concentration of dissociated Ca^{2+} ions from both Bulk and Nano $CaCO_3$.

Fig. S2 Effect of $CaCl_2$ on membrane capacitance. a) Changes in pH value of the electrolyte solution as a function of the concentration of $CaCl_2$. b) Relative increase of membrane capacitance in response to the varying concentration of $CaCl_2$.