Supporting Information

Annulation of 2,3-diphenyl-4*H*-chromen-4-ones *via* photo-induced hydrogen evolution

Yang Kang, Tao Wang, Yong Liang, Yangyang Zhang, Rui Wang, Zunting Zhang*

Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical

Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs

in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal

University, Xi'an 710062, People's Republic of China. E-mail: zhangzt@snnu.edu.cn; Fax: (+86)-29-

81530727; Tel: (+86) -29-85303940.

Table of Contents

1. Experimental Procedures	
2. Characterization Data for Compounds	
3. References	
4. ¹ H, ¹³ C NMR for compounds 1 , 2 and 3	
5. Detection the generation of H ₂	

1. Experimental Procedures

1.1 Synthesis of 2,3-diphenyl-4H-chromen-4-one (1)¹

R¹=H, OMe, F, Me; R²=H, Me, F, OMe ; R³=H, Cl, Me, F, t-Bu

The mixture of 3-iodo-2-phenyl-4*H*-chromen-4-one **3a** (139 mg, 0.4 mmol), phenylboronic acid (122 mg, 1 mmol), Cs_2CO_3 (652 mg, 2 mmol) and Pd(PPh_3)_4 (1 % mmol, 11.5 mmg) was dissolved in a mixed solvent composed of dioxane and water (10 ml, 4:1, v/v). The reaction mixture was allowed to stir at 85 °C for 6 h under Ar. Then, the mixture was poured into the water (10 ml) and then extracted with ethyl acetate (20 ml×3). The combined organic layer dried over (Mg₂SO₄) and concentrated under reduced pressure. The residue was purified by column chromatography (ethyl acetate/petroleum ether, 1:12) to give the desired product **1a** (yield, 83 %).

Similarly, compounds **1a-1z** and were prepared with the same method described above.

The cold diluted solution of BBr₃ (625 mg, 2.5 mmol) was added to a stirring solution of compound **1b** (171 mg, 0.5 mmol) or **1p** (199 mg, 0.5 mmol) in dry chloroform (10 mL) under the ice bath. The mixture was stirred at the ice bath for 30 min and refluxed for overnight. After cooling to room temperature, the excess BBr₃ was quenched by adding MeOH (5 mL). The volatiles were removed under the reduced pressure and purified by column chromatography to give **1b** (91.8 mg, 56 %) or **1p** (yield, 60 %).²

1.2 Synthesis of 14*H*-dibenzo[*a*,*c*]xanthen-14-one derivatives (2)

R¹=H, OMe, Me, F, OH; R³=H, CI, Me, F, t-Bu; R²=H, Me, OMe, F, OH

Substrate 2,3-diphenyl-4*H*-chromen-4-one **1a** (149 mg, 0.5 mmol) was dissolved in a mixture of EtOH-H₂O (100 mL, 19:1, v/v) at ambient temperature in a quartz tube. The mixture was deaerated for 3 min by bubbling argon and irradiated with a high pressure mercury lamp (500 W) at room temperature for 3 h. Then the reaction mixture were removed under reduced pressure and purified by column chromatographied (ethyl acetate/petroleum ether, 1:50) to give **2a** (yield, 63 %).

Similarly, compounds 2a-2z were prepared with the same method as described above.

1.3 Synthesis of 2,3-diphenyl-4*H*-chromene (3)

The mixture of 2,3-diphenyl-4*H*-chromen-4-one **1a** (149 mg, 0.5 mmol) and aluminium chloride (333 mg, 2.5 mmol) were dissolved in absolute THF (10 ml) at ice bath. Then the LiAlH₄ (6 ml) was added drop by drop. The solution was stirred at the room temperature for 30 min under Ar, poured into the saturated ammonium chloride to quench the reaction. The mixture was extracted with ethyl acetate (20 ml×3) and combined organic layer dried over (Mg₂SO₄), concentrated under reduced pressure. Then the oily residue were purified by column chromatographied (petroleum ether) to give **3** (yield, 44 %).

2. Characterization Data for Compounds

2,3-diphenyl-4*H***-chromen-4-one (1a):**³ Yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.30 (d, J = 7.9 Hz, 1H), 7.71 (t, J = 7.8 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.42 (dd, J = 15.1, 7.7 Hz, 3H), 7.35-7.26 (m, 6H), 7.22 (d, J = 7.4 Hz, 2H); ¹³C NMR

(100 MHz, CDCl₃) δ (ppm) 177.48, 161.62, 156.22, 133.81, 133.46, 133.00, 131.37, 130.20, 129.72, 128.40, 128.22, 127.74, 126.55, 125.22, 123.69, 123.12, 118.11.

2-(4-methoxyphenyl)-6-methyl-3-phenyl-4H-

chromen-4-one (1b):⁴ Yield: 86%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.05 (s, 1H), 7.49 (dd, J = 8.5, 1.8 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.36-7.27 (m,

5H), 7.25-7.22 (m, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 3.79 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 177.48, 161.29, 160.94, 154.37, 134.94, 134.89, 133.59, 131.36, 131.33, 128.45, 127.55, 125.71, 125.69, 123.26, 122.03, 117.75, 113.58, 55.40, 21.12.

OMe 2-(4-methoxyphenyl)-6-methyl-3-(m-tolyl)-4H-

chromen-4-one (1c): Yield: 89%. White soild. m.p. 135.7-137.1 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.05 (s, 1H), 7.49 (d, J = 8.5 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.35 (d, J = 8.6 Hz, 2H), 7.20-7.18 (m, 1H),

7.10 (s, 2H), 6.97 (d, J = 7.5 Hz, 1H), 6.77 (d, J = 8.6 Hz, 2H), 3.80 (s, 3H), 2.48 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 177.61, 161.08, 160.92, 154.36, 137.94, 134.89, 134.85, 133.45, 131.95, 131.30, 128.41, 128.37, 128.32, 125.77, 125.72, 123.26, 122.16, 117.73, 113.55, 55.41, 21.62, 21.14; IR (KBr), v (cm⁻¹) 2914, 2565, 2038, 1778, 1608, 1485, 1363, 1257, 1024, 825, 696, 522; HRMS (ESI): calc. for C₂₄H₂₀O₃ [M+Na]⁺ 379.1310, found 379.1308.

3-(4-(*tert***-butyl)phenyl)-2-(4-methoxyphenyl)-6methyl-4***H***-chromen-4-one (1d): Yield: 92% (146.5 mg). White soild. m.p. 169.8-171.6 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.04 (s, 1H), 7.48 (dd,** *J* **= 8.5, 2.0 Hz, 1H), 7.41 (d,** *J* **= 8.5 Hz, 1H), 7.36-7.31 (m, 4H),**

7.15 (d, J = 8.6 Hz, 2H), 6.76 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 2.47 (s, 3H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 177.62, 161.11, 160.87, 154.38, 150.35, 134.84, 134.79, 131.35, 130.89, 130.38, 125.95, 125.75, 125.40, 123.31, 121.95, 117.72, 113.51, 55.41, 34.68, 31.49, 21.13; IR (KBr), v (cm⁻¹) 2962, 1606, 1500, 1363, 1255, 1022, 925, 829, 594, 532; HRMS (ESI): calc. for C₂₇H₂₆O₃ [M+Na]⁺ 421.1780, found 421.1773.

6-methyl-2,3-diphenyl-4*H***-chromen-4-one** (1e):⁴ Yield: 81%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.12 (s, 1H), 7.56 (dd, J = 8.4, 1.7 Hz, 1H), 7.48 (d, J = 8.6 Hz, 1H), 7.44 (d, J =7.2 Hz, 2H), 7.41-7.27 (m, 8H), 2.53 (s, 3H); ¹³C NMR (100

MHz, CDCl₃) δ (ppm) 177.49, 161.47, 154.48, 135.12, 135.06, 133.56, 133.17, 131.39, 130.09, 129.69, 128.36, 128.17, 127.66, 125.76, 123.32, 122.93, 117.86, 21.14.

3-(4-(tert-butyl)phenyl)-6-methyl-2-phenyl-4H-

chromen-4-one (1f): Yield: 91%. White soild. m.p. 185.6-188.7 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.06 (s, 1H), 7.48 (d, J = 8.5 Hz, 1H), 7.43-7.37 (m, 3H),

7.30 (d, J = 8.2 Hz, 3H), 7.25 (d, J = 7.6 Hz, 2H), 7.14 (d, J = 7.6 Hz, 2H), 2.47 (s, 3H), 1.30 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) δ 177.61, 161.25, 154.44, 150.44, 134.97, 134.94, 133.71, 130.90, 129.95, 129.68, 128.05, 125.74, 125.28, 123.31, 122.77, 117.80, 34.64, 31.44, 21.11. IR (KBr), v (cm⁻¹) 2960, 1639, 1485, 1367, 1230, 1049, 929, 837, 696, 553. HRMS (ESI): calc. for C₂₆H₂₄O₂ [M+Na]⁺ 391.1674, found 391.1670.

6-methyl-2-phenyl-3-(*p*-tolyl)-4*H*-chromen-4-one (1g): Yield: 87%. White soild. m.p. 197.8-201.1 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.06 (s, 1H), 7.49 (dd, J = 8.5, 2.0 Hz, 1H), 7.44-7.38 (m, 3H), 7.32 (d, J = 7.2 Hz, 1H),

7.29-7.25 (m, 2H), 7.10 (s, 4H), 2.47 (s, 3H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 177.64, 161.24, 154.48, 137.32, 135.02, 134.97, 133.73, 131.19, 130.05, 129.98, 129.68, 129.15, 128.15, 125.78, 123.31, 122.86, 117.83, 21.44, 21.12; IR (KBr), v (cm⁻¹) 2920, 1637, 1485, 1363, 1228, 1045, 925, 819, 698, 511; HRMS (ESI): calc. for C₂₃H₁₈O₂ [M+H]⁺ 327.1385, found 327.1378.

6-methyl-3-phenyl-2-(*p*-tolyl)-4*H*-chromen-4-one (1h):⁴ Yield: 83%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.06 (s, 1H), 7.50 (d, *J* = 8.5 Hz, 1H), 7.42 (d, *J* = 8.5 Hz, 1H), 7.31–7.25 (m, 5H), 7.22 (d, *J* = 7.6 Hz, 2H), 7.06 (d, *J* =

7.6 Hz, 2H), 2.48 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 177.52, 161.61, 154.49, 140.45, 135.02, 134.96, 133.45, 131.40, 130.70, 129.63, 128.91, 128.38, 127.58, 125.77, 123.35, 122.59, 117.84, 21.54, 21.14.

6-methyl-2,3-di-p-tolyl-4*H***-chromen-4-one (1i):** Yield: 86%. White soild. m.p. 203.1-205.9 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.05 (s, 1H), 7.48 (dd, J = 8.5, 2.0 Hz, 1H), 7.41 (d, J = 8.5 Hz, 1H), 7.30 (d, J = 8.2 Hz, 2H),

7.11 (s, 4H), 7.07 (d, J = 8.2 Hz, 2H), 2.47 (s, 3H), 2.33 (d, J = 5.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 177.65, 161.35, 154.45, 140.31, 137.22, 134.90, 134.86, 131.15, 130.82, 130.29, 129.59, 129.16, 128.88, 125.75, 123.30, 122.48, 117.79, 21.53, 21.45, 21.11; IR (KBr), ν (cm⁻¹) 2920, 1795, 1639, 1481, 1361, 1224, 1045, 925, 817, 634, 509; HRMS (ESI): calc. for C₂₄H₂₀O₂ [M+H]⁺ 341.1542, found 341.1531.

3-(4-(tert-butyl)phenyl)-6-methyl-2-(p-tolyl)-4H-

chromen-4-one (1j): Yield: 94%. White soild. m.p. 188.6-191.1 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.05 (s, 1H), 7.48 (dd, J = 8.5, 1.9 Hz, 1H), 7.41 (d, J =

8.5 Hz, 1H), 7.30 (dd, J = 15.7, 8.2 Hz, 4H), 7.14 (d, J = 8.1 Hz, 2H), 7.05 (d, J = 8.1 Hz, 2H), 2.47 (s, 3H), 2.32 (s, 3H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 177.67, 161.36, 154.44, 150.38, 140.29, 134.88, 134.86, 130.87, 130.82, 130.19, 129.62, 128.82, 125.73, 125.33, 123.31, 122.42, 117.78, 34.67, 31.48, 21.55, 21.12; IR (KBr), v (cm⁻¹) 3055, 2952, 1892, 1645, 1483, 1363, 1228, 1105, 1020, 929, 817, 659, 551; HRMS (ESI): calc. for C₂₇H₂₆O₂ [M+Na]⁺ 405.1830, found 405.1824.

3-phenyl-2-(*p***-tolyl)**-4*H***-chromen-4-one** (**1k**):⁵ Yield: 84%. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.30 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.71-7.68 (m, Hz, 1H), 7.53 (d, *J* = 8.3 Hz, 1H), 7.44-7.41 (m, 1H), 7.33-7.28 (m, 5H), 7.25-7.22 (m, 2H), 7.08 (d, *J*

= 8.0 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 177.47, 161.77, 156.26, 140.57, 133.68, 133.32, 131.39, 130.63, 129.66, 128.96, 128.40, 127.65, 126.55, 125.11, 123.77, 122.82, 118.07, 21.52.

3-(4-(*tert***-butyl)phenyl)-2-(***p***-tolyl)-4***H***-chromen-4-one (11): Yield: 92%. White soild. m.p. 148.2-150.8 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.33-8.24 (m, 1H), 7.69**

tBu (dd, J = 11.3, 4.2 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H), 7.41 (t, J = 7.3 Hz, 1H), 7.32 (dd, J = 10.8, 8.4 Hz, 4H), 7.16 (d, J = 8.2 Hz, 2H), 7.07 (d, J = 8.2 Hz, 2H), 2.34 (s, 3H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 177.65, 161.48, 156.13, 150.45, 140.42, 133.60, 130.81, 130.64, 129.99, 129.63, 128.85, 126.47, 125.35, 125.01, 123.62, 122.54, 118.01, 34.67, 31.47, 21.56; IR (KBr), v (cm⁻¹) 3037, 2956, 1639, 1465, 1377, 1228, 1107, 1016, 879, 765, 621, 563; HRMS (ESI): calc. for C₂₆H₂₄O₂ [M+Na]⁺ 391.1674, found 391.1672.

3-(*m*-tolyl)-2-(*p*-tolyl)-4*H*-chromen-4-one (1m): Yield: 90%. Yellow soild. m.p. 159.6-161.3 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.27 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.68-7.64 (m, 1H), 7.50 (d, *J* = 8.4 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.17 (t, *J* = 7.6 Hz, 1H), 7.12-7.05 (m, 4H),

6.96 (d, J = 7.5 Hz, 1H), 2.31 (d, J = 3.9 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 177.53, 161.50, 156.08, 140.44, 137.81, 133.60, 133.04, 131.87, 130.48, 129.52, 128.83, 128.43, 128.26, 128.23, 126.38, 125.00, 123.56, 122.76, 117.98, 21.54, 21.47; IR (KBr), v (cm⁻¹) 3028, 2916, 1818, 1635, 1461, 1377, 1220, 1137, 1051, 827, 759, 702, 501; HRMS (ESI): calc. for C₂₃H₁₈O₂ [M+Na]⁺ 349.1204, found 349.1207.

7-methoxy-3-phenyl-2-(*p*-tolyl)-4*H*-chromen-4-one (1n):⁵ Yield: 91%. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.18 (d, *J* = 8.9 Hz, 1H), 7.31-7.24 (m, 5H), 7.24-7.17 (m, 2H), 7.06 (d, *J* = 8.1 Hz, 2H), 6.98 (dd,

J = 8.9, 2.4 Hz, 1H), 6.91 (d, J = 2.3 Hz, 1H), 3.91 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 176.84, 164.19, 161.27, 157.86, 140.37, 133.31, 131.35, 130.57, 129.53, 128.89, 128.33, 127.86, 127.54, 122.52, 117.53, 114.53, 100.14, 55.94, 21.52.

7-methoxy-3-(m-tolyl)-2-(p-tolyl)-4H-chromen-4-one (10): Yield: 93%. White soild. m.p. 153.7-154.9 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.17 (d, J = 8.8 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 7.16 (t, J = 7.5 Hz, 1H), 7.07 (dd, J = 20.6, 8.5 Hz, 4H), 6.98-6.93 (m, 2H), 6.90

(d, J = 2.0 Hz, 1H), 3.90 (s, 3H), 2.31 (d, J = 8.0 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 176.94, 164.14, 161.07, 157.81, 140.28, 137.75, 133.13, 131.92, 130.57, 129.45, 128.82, 128.36, 128.27, 128.22, 127.80, 122.60, 117.48, 114.47, 100.09, 55.89, 21.54, 21.48; IR (KBr), v (cm⁻¹) 3024, 2918, 1919, 1629, 1438, 1355,

1261, 1170, 1016, 829, 702, 528; HRMS (ESI): calc. for C₂₄H₂₀O₃ [M+Na]⁺ 379.1310, found 379.1308.

4H), 7.14 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.2 Hz, 2H), 6.98 (dd, J = 8.9, 2.3 Hz, 1H), 6.91 (d, J = 2.2 Hz, 1H), 3.92 (s, 3H), 2.33 (s, 3H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm) 177.05, 164.14, 161.05, 157.85, 150.37, 140.25, 130.85, 130.74, 130.07, 129.56, 128.84, 127.90, 125.31, 122.38, 117.56, 114.47, 100.10, 55.94, 34.67, 31.48, 21.56; IR (KBr), v (cm⁻¹) 2958, 1915, 1620, 1438, 1367, 1253, 1022, 929, 827, 621, 563, 476; HRMS (ESI): calc. for C₂₆H₂₃O₃ [M+H]⁺ 399.1960, found 399.1957.

3-(4-fluorophenyl)-2-(*p***-tolyl)-4***H***-chromen-4-one (1q): Yield: 85%. White soild. m.p. 170.1-172.9 °C. ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 8.27 (d, J = 7.9 Hz, 1H), 7.68 (d, J = 7.3 Hz, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H),**

7.28 (d, J = 8.0 Hz, 2H), 7.20 (dd, J = 8.0, 5.7 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 7.00 (t, J = 8.6 Hz, 2H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 177.40, 162.36 (d, ¹J = 245.33 Hz), 161.96, 156.16, 140.76, 133.80, 133.06 (d, ³J = 8.03 Hz), 130.35, 129.59, 129.10 (d, ⁴J = 3.74 Hz), 129.05, 126.44, 125.21, 123.55, 121.70, 118.08, 115.45 (d, ²J = 21.33 Hz), 21.53; IR (KBr), v (cm⁻¹) 3041, 1917, 1762, 1631, 1463, 1377, 1226, 1043, 1012, 875, 765, 715, 621, 514; HRMS (ESI): calc. for C₂₂H₁₅FO₂ [M+Na]⁺ 353.0954, found 353.0952.

3-(4-chlorophenyl)-7-methoxy-2-(p-tolyl)-4H-

chromen-4-one (1r): Yield: 75%. Yellow soild. m.p. 188.1-189.6 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.17 (d, *J* = 8.9 Hz, 1H), 7.27 (dd, *J* = 8.3, 1.8 Hz, 4H), 7.16 (d, *J* = 8.5 Hz, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 7.00 (dd, J = 8.9, 2.4 Hz, 1H), 6.92 (d, J = 2.3 Hz, 1H), 3.92 (s, 3H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 176.69, 164.40, 161.69, 157.90, 140.76, 133.59, 132.78, 131.81, 130.27, 129.54, 129.12, 128.63, 127.88, 121.40, 117.37, 114.76, 100.22, 55.99, 21.56; IR (KBr), v (cm⁻¹) 3041, 1627, 1444, 1377, 1255, 1091, 1012, 929, 823, 511; HRMS (ESI): calc. for C₂₃H₁₇ClO₃ [M+H]⁺ 377.0944, found 377.0939.

OMe 3-(4-fluorophenyl)-2-(4-methoxyphenyl)-6-methyl-

4*H***-chromen-4-one (1s):** Yield: 75%. Gray soild. m.p. 179.2-182.4 °C.¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.04 (s, 1H), 7.50 (dd, J = 8.5, 1.4 Hz, 1H), 7.42 (d, J =

8.5 Hz, 1H), 7.32 (d, J = 8.7 Hz, 2H), 7.20 (dd, J = 8.2, 5.6 Hz, 2H), 7.03-7.00 (m, 2H), 6.79 (d, J = 8.7 Hz, 2H), 3.80 (s, 3H), 2.47 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 177.40, 162.30 (d, ¹J = 244.92 Hz), 161.48, 161.06, 154.36, 135.08, 135.01, 133.08 (d, ³J = 8.12 Hz), 131.31, 129.46 (d, ⁴J = 3.44 Hz), 125.68, 125.50, 123.16, 121.02, 117.77, 115.50 (d, ²J = 21.51 Hz), 113.71, 55.43, 21.12; IR (KBr), ν (cm⁻¹) 2960, 1899, 1610, 1508, 1367, 1251, 1043, 927, 833, 522; HRMS (ESI): calc. for C₂₃H₁₇FO₂ [M+Na]⁺ 383.1059, found 383.1059.

3-(4-fluorophenyl)-7-methoxy-2-(p-tolyl)-4H-

chromen-4-one (1t): Yield: 82%. White soild. m.p. 208.1-210.5 °C.¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.17 (d, J = 8.9 Hz, 1H), 7.28-7.25 (m, 2H), 7.19 (dd,

J = 8.5, 5.6 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 7.02-6.97 (m, 3H), 6.92 (d, J = 2.3 Hz, 1H), 3.92 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 176.81, 164.31, 162.32 (d, ¹J = 245.07 Hz), 161.52, 157.88, 140.59, 133.07 (d, ³J = 8.03 Hz), 130.40, 129.52, 129.16 (d, ⁴J = 3.43 Hz), 129.03, 127.84, 121.51, 117.41, 115.41 (d, ²J = 21.36 Hz), 114.68, 100.17, 55.97, 21.54; IR (KBr), v (cm⁻¹) 2977, 1629, 1506, 1380, 1255, 1012, 929, 829, 603, 518; HRMS (ESI): calc. for C₂₃H₁₇FO₃ [M+Na]⁺ 383.1059, found 383.1063.

6-fluoro-3-(*m***-tolyl)-2-(***p***-tolyl)-4***H***-chromen-4-one (1u): Yield: 91%. White soild. m.p. 126.3-128.6 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.91 (dd,** *J* **= 8.1, 2.8 Hz, 1H), 7.53 (dd,** *J* **= 9.0, 3.9 Hz, 1H), 7.44-7.39 (m, 1H), 7.29 (d,** *J* **= 7.9 Hz, 2H), 7.18 (t,** *J* **= 7.4 Hz, 1H), 7.11-7.07 (m, 4H),**

6.95 (d, J = 7.4 Hz, 1H), 2.32 (d, J = 8.5 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃), δ (ppm) 176.92, 161.87, 159.65 (d, ¹J = 244.47 Hz), 152.38, 140.74, 137.99, 132.78, 131.87, 130.32, 129.58, 128.95, 128.64, 128.39, 128.25, 124.78 (d, ³J = 7.39 Hz), 122.23, 121.91 (d, ²J = 25.35 Hz), 120.15 (d, ³J = 7.98 Hz), 111.22 (d, ²J = 23.38 Hz), 21.59, 21.56; IR (KBr), v (cm⁻¹) 3035, 2921, 1627, 1481, 1359, 1272, 1188, 1095, 962, 757, 711, 495; HRMS (ESI): calc. for C₂₃H₁₇FO₂ [M+Na]⁺ 367.1110, found 367.1111.

3-(4-(tert-butyl)phenyl)-6-fluoro-2-(p-tolyl)-4H-

chromen-4-one (1v): Yield: 77%. White soild. m.p. 170.8-173.5 °C.¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.91 (dd, J = 8.3, 3.1 Hz, 1H), 7.53 (dd, J = 9.1, 4.2 Hz,

1H), 7.43-7.38 (m, 1H), 7.35-7.28 (m, 4H), 7.16-7.13 (m, 2H), 7.07 (d, J = 8.1 Hz, 2H), 2.34 (s, 3H), 1.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 176.94, 161.81, 159.63 (d, ¹J = 244.56 Hz), 152.39, 150.66, 140.67, 130.79, 130.42, 129.69, 129.63, 128.92, 125.43, 124.78 (d, ³J = 7.31 Hz), 121.97 (d, ⁴J = 2.25 Hz), 121.84 (d, ²J = 23.12 Hz), 120.12 (d, ³J = 7.94 Hz), 111.22 (d, ²J = 23.41 Hz), 34.71, 31.47, 21.58; IR (KBr), v (cm⁻¹) 3047, 2958, 1919, 1635, 1481, 1369, 1272, 1103, 1043, 941, 831, 559; HRMS (ESI): calc. for C₂₆H₂₃FO₂ [M+Na]⁺ 409.1580, found 409.1578.

-F 2-(4-fluorophenyl)-7-methoxy-3-(*m*-tolyl)-4*H*-

chromen-4-one (1w): Yield: 84%. Yellow soild. m.p. 210.1-213.5 °C.¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.18 (d, *J* = 8.9 Hz, 1H), 7.39 (dd, *J* = 8.5, 5.5 Hz, 2H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.12-7.06 (m, 2H), 7.01-6.91

(m, 5H), 3.92 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 176.80,

164.31, 163.46 (d, ${}^{1}J$ = 250.15 Hz), 159.87, 157.79, 138.00, 132.79, 131.88, 131.73 (d, ${}^{3}J$ = 8.59 Hz), 129.63 (d, ${}^{4}J$ = 3.48 Hz), 128.62, 128.38, 128.27, 127.93, 122.98, 117.49, 115.33 (d, ${}^{2}J$ = 21.76 Hz), 114.64, 100.14, 55.96, 21.54; IR (KBr), *v* (cm⁻¹) 3022, 2916, 1629, 1444, 1375, 1261, 1012, 948, 835, 700, 534; HRMS (ESI): calc. for C₂₃H₁₇FO₃ [M+Na]⁺383.1059, found 383.1066.

3-(4-(tert-butyl)phenyl)-2-(4-fluorophenyl)-7-

methoxy-4*H*-chromen-4-one (1x): Yield: 60%. White soild. m.p. 179.9-182.5 °C. ¹H NMR (600 MHz, CDCl₃) δ (ppm) 8.18 (d, *J* = 8.8 Hz, 1H), 7.38

(dd, J = 8.2, 5.6 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 6.99 (dd, J = 8.8, 1.6 Hz, 1H), 6.93 (dd, J = 17.4, 8.9 Hz, 3H), 3.92 (s, 3H), 1.31 (s, 9H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm) 176.86, 163.44 (d, ¹J = 251.22 Hz), 159.89, 157.79, 150.67, 131.78 (d, ³J = 8.31 Hz), 130.85, 129.75 (d, ⁴J = 3.15 Hz), 129.70, 127.95, 125.42, 122.73, 117.51, 115.30 (d, ²J = 21.75 Hz), 114.61, 100.12, 55.96, 34.69, 31.45; IR (KBr), ν (cm⁻¹) 3060, 2962, 1625, 1444, 1384, 1261, 1109, 1024, 931, 833, 619, 518; HRMS (ESI): calc. for C₂₆H₂₃FO₃ [M+Na]⁺ 425.1529, found 425.1525.

3-(4-(*tert***-butyl)phenyl)-7-hydroxy-2-(***p***-tolyl)-4***H***-chromen-4-one (1y):** Yield: 62%. White soild. m.p. 296.6-298.5 °C. ¹H NMR (600 MHz, DMSO) δ (ppm) 10.81 (s, 1H), 7.92 (d, *J* = 8.7 Hz, 1H), 7.31 (d, *J* = 8.2

Hz, 2H), 7.26 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 6.94 (dd, J = 8.7, 2.0 Hz, 1H), 6.90 (d, J = 2.0 Hz, 1H), 2.27 (s, 3H), 1.27 (s, 9H); ¹³C NMR (100 MHz, DMSO) δ (ppm) 175.54, 162.71, 160.42, 157.26, 149.54, 139.84, 130.76, 130.27, 130.26, 129.22, 128.64, 127.16, 124.67, 121.38, 115.53, 115.10, 102.15, 34.25, 31.12, 20.88; IR (KBr), ν (cm⁻¹) 3201, 2960, 1618, 1452, 1271, 1172, 931, 833, 702, 513; HRMS (ESI): calc. for C₂₆H₂₄O₃ [M+Na]⁺ 407.1623, found 407.1619.

2-(4-hydroxyphenyl)-6-methyl-3-phenyl-4*H***-chromen-4-one (1z):** Yield: 66%. White soild. m.p. 277.6-279.5 °C. ¹H NMR (600 MHz, DMSO) δ (ppm) 10.01 (s, 1H), 7.87 (s, 1H), 7.65 (dd, J = 8.6, 1.9 Hz, 1H), 7.61 (d, J = 8.5 Hz,

1H), 7.33-7.28 (m, 3H), 7.23-7.20 (m, 2H), 7.17 (dd, J = 7.9, 1.3 Hz, 2H), 6.67-6.65 (m, 2H), 2.45 (s, 3H); ¹³C NMR (150 MHz, DMSO) δ (ppm) 175.96, 161.32, 159.15, 153.69, 135.14, 134.72, 133.64, 131.14, 131.11, 127.98, 127.16, 124.50, 123.25, 122.42, 120.99, 118.06, 114.91, 20.47; IR (KBr), v (cm⁻¹) 3168, 1606, 1434, 1367, 1280, 1176, 1060, 933, 844, 740, 595, 516; HRMS (ESI): calc. for C₂₂H₁₆O₃ [M+Na]⁺ 351.0977, found 351.0933.

2,3-diphenyl-4*H***-chromene (3):** Yield: 44%. White soild. m.p. 77.6-79.5 °C. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.32 -7.28 (m, 2H), 7.21-7.10 (m, 5H), 7.04 (d, *J* = 7.6 Hz, 1H), 3.84 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 151.93, 146.86, 140.38,

135.26, 129.52, 129.02, 128.67, 128.37, 128.21, 127.92, 127.64, 126.70, 123.43, 120.70, 116.27, 110.59, 31.23; IR (KBr), *v* (cm⁻¹) 3053, 2920, 1946, 1585, 1488, 1357, 1242, 1114, 995, 756, 655, 545.

3. References

- G. Priyadarshani, S. Amrutkar, A. Nayak, U. C. Banerjee, C. N. Kundu and S. K. Guchhait, *Eur. J. Med. Chem.* 2016, *122*, 43-54.
- 2. Che, H.; Lim, H.; Kim, H. P.; Park, H. Eur. J. Med. Chem. 2011,46, 4657-4660.
- 3. S. Baruah, P. P. Kaishap and S. Gogoi, Chem. Commun. 2016, 52, 13004-13007.
- 4. X. Zhao, J. Zhou, S. Lin, X. Jin and R. Liu, Org. Lett. 2017, 19, 976-979.
- C. Shen, W. Li, H. Yin, A. Spannenberg, T. Skrydstrup and X.-F. Wu, *Adv. Synth. Catal.* 2016, 358, 466-479.

4. ¹H, ¹³C NMR for cpmpounds 1, 2 and 3

1a

S18

1e

S22

1z

2f

8.4241 8.4032 8.1591 -8.1591 -8.1591 -7.5009 7.75009 7.4850 7.4850 7.4850 7.4850 7.4350 7.4350 7.4030 7.73332 7.2655 $<^{9.9842}_{9.9627}$ 2.5829 2.5731 2.4994 3.00 8 1:00 1:00 1:00 1:00 7.0 f1 (ppm) 13.5 12.0 10.5 9.0 8.0 5.0 3.0 2.0 1.0 0.0 6.0 4.0 ~154.8298 ~152.6498 -140.6784 128.7404 126.9842 -121.8875 -117.2810 -117.2810-178.2620 77.4774 77.1604 76.8422 22.3824 21.9225 21.1713 110 f1 (ppm) 210 190 150 170 130 90 80 70 60 50 40 30 20 10 Ó

2i

2j

 $\langle ^{10.0975}_{10.0824}$ 8.4452 -3.9710
 84130

 825721

 825721

 82574

 82574

 82574

 82574

 82574

 82574

 82574

 82574

 82574

 82574

 82574

 82574

 82574

 82574

 82574

 82574

 82574

 82575

 82575

 82575

 82509

 829509

 829509

 829509
--2.6061 MeO. 8 8888 28 0.1 3.02-3.00-7.0 6.0 f1 (ppm) 13.5 12.0 10.5 9.0 8.0 5.0 4.0 3.0 2.0 0.0 1.0 -129.6121 -128.8029 -128.1531 -128.1531 -122.1311 -122.1311 -12415 -99.7219 --164.4583 -156.1411 \155.1481 -141.2266 -177.4131 77.3714 -56.0334 76.9483 -22.4103MeO

> 110 f1 (ppm)

90 80 70 60 50 40 30 20 10 0

210

170

150

130

190

2r

5. Detection the generation of H₂ by GC

5.1 The conditions of GC

Using Ar as carrier gas, thermal conductivity detector (TCD temperature was 120 °C) and stainless steel column (column length 2 m, column temperature at 40 °C, Tam TDS-01 60~80 mesh) were used for gas chromatography analysis. Under the conditions of gas velocity of 0.06 Mpa and the flow rate of 60 mL/min, gas was analysized at room temperature with injection of 20 uL.

5.2 The experimental photo-induced hydrogen evolution of 1n

The chromatographic ethanol (250 mL) was degassed for an hour by ultrasonic. Then, sodium sulfite (28 g) and hydroquinone (2.2 g) was added and the mixture was refluxed for 3 h to remove the solvent deoxidization. The compound of 1n (171 mg, 0.5 mmol) was dissolved in 100 mL deoxidization chromatographic ethanol at room temperature in a quartz tube I. In the same conditions, quartz tube II without compound 1n was prepared. All operations above were conducted in argon atmosphere. After strict sealing, quartz tube I and II were irradiated with a high-pressure mercury lamp (500 W) at room temperature for 3 hours and the yield of 2n was 54%.

5.3 The results and discussion of detection H₂

According to the experiment data, the reference substance H_2 retention time tR_1 was 1.4713 min (Figure 1); the retention time tR_2 in the quartz tube I was 1.4533 min (Figure 2). That is to say that there was generated H_2 in the tube I. The quartz tube II was not found H_2 . It is indicated that the annulation of **1n** was hydrogen evolution.

Figure 1 Chromatogram of reference substance H₂

Figure 2 Chromatogram of gas in the tube I