Hydrothermal synthesis of nitrogen and boron doped carbon quantum dots with yellow-green emission for

sensing Cr(VI), anti-counterfeiting and cell imaging

Yongming Guo,^{a,*} Yuzhi Chen,^b Fengpu Cao,^a Lijuan Wang,^a Zhuo Wang^{b,*} and

Yumin Leng^c

^aKey Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China

^bCollege of Science, State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China

^cCollege of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China

*Corresponding author: E-mail: chinahenangm@163.com (Yongming Guo); wangzhuo77@mail.buct.edu.cn (Zhuo Wang)

Fig. S1 (A) UV-vis absorption spectrum of NB-CQDs prepared from 2-HPBA and EDA with 1:1. (B) Excitation spectrum of NB-CQDs prepared from 2-HPBA and EDA with 1:1. (C) Emission spectra of NB-CQDs prepared from 2-HPBA and EDA with 1:1 at different excitation wavelengths.

Fig. S2 (A) UV-vis absorption spectrum of NB-CQDs prepared from 2-HPBA and EDA with 1:2. (B) Excitation spectrum of NB-CQDs prepared from 2-HPBA and

EDA with 1:2. (C) Emission spectra of NB-CQDs prepared from 2-HPBA and EDA with 1:2 at different excitation wavelengths.

Fig. S3 (A) UV-vis absorption spectrum of NB-CQDs prepared from 2-HPBA and EDA with 2:1. (B) Excitation spectrum of NB-CQDs prepared from 2-HPBA and EDA with 2:1. (C) Emission spectra of NB-CQDs prepared from 2-HPBA and EDA with 2:1 at different excitation wavelengths.

Fig. S4 Comparison of the I₅₁₅/A₄₁₀ of NB-CQDs prepared from different ratios of 2-

HPBA and EDA.

Fig. S5 (A) UV-vis absorption spectrum of CQDs synthesized from 2-HPBA. (B) Excitation spectrum of CQDs synthesized from 2-HPBA. (C) Emission spectra of CQDs synthesized from 2-HPBA at different excitation wavelengths. (D) Histogram of I_{400}/A_{290} against 2-HPBA.

Fig. S6 (A) UV-vis absorption spectrum of CQDs synthesized from EDA. (B) Excitation spectrum of CQDs synthesized from EDA. (C) Emission spectra of CQDs synthesized from EDA at different excitation wavelengths. (D) Histogram of I_{400}/A_{290} against EDA.

Fig. S7 UV-vis absorption spectrum of purified NB-CQDs.

Fig. S8 High resolution C1s XPS spectrum (A), N1s XPS spectrum (B), O1s XPS spectrum (C) and B1s XPS spectrum (D) of the as-prepared NB-CQDs.

Fig. S9 The effect of scan time on the fluorescent intensity of NB-CQDs.

Fig. S10 The effect of temperature on the fluorescent intensity of NB-CQDs.

Table S1 Comparison of the performance of the presented method with some other

 reported nanosensors for Cr(VI) detection.

Probes	Readout	LOD	Linear range	References
Carbon dots	Fluorescence	15 nM	0.05-10.0 µM	1
Fluorescent copper	Fluorescence	43 nM	0.2–60 µM	2
nanoclusters				
Fluorescent silicon	Fluorescence	28 nM	0.1 - 200 μM	3
nanoparticles				
Gallic acid capped	UV	0.1 µM	0.15 - 21 μM	4

UV	10 nM	0.01-0.5 μM	5
Fluorescence	0.5 µM	0-250 µM	This work
	UV Fluorescence	UV 10 nM Fluorescence 0.5 μM	UV 10 nM 0.01-0.5 μM Fluorescence 0.5 μM 0-250 μM

Table S2 Results of NB-CQDs for the detection of Cr(VI) in tap water and lake water.

Samples	Added (µM)	Found (µM)	Recovery(%)	RSD(%)
Tap water	0	0	-	-
	60.0	68.03	113.4	2.96
	80.0	83.13	103.9	4.38
Lake water	0	0	-	-
	60.0	61.22	102.0	4.98
	80.0	82.11	102.6	3.43

Fig. S11 UV-vis absorption spectrum of $K_2Cr_2O_7$ (100 μ M), excitation spectrum of NB-CQDs and emission spectrum of NB-CQDs (excitation wavelength is 410 nm).

Fig. S12 UV-vis absorption spectra of NB-CQDs (1), 100 μ M K₂Cr₂O₇ (2), the mixture of NB-CQDs and 100 μ M K₂Cr₂O₇ (3), and the blue curve was obtained by subtracting curve 2 from curve 3.

Fig. S13 Fluorescence decay spectra of NB-CQDs in the absence and presence of $K_2Cr_2O_7$ (100 μ M and 500 μ M).

Fig. S14 Picture of NB-CQDs/PVA film in visible light (A) and 365 nm UV light (B).

Fig. S15 (A) Excitation spectrum of NB-CQDs in PVA film. (B) Emission spectra of NB-CQDs in PVA film at different excitation wavelengths.

References:

- X. Liu, T. Li, Q. Wu, X. Yan, C. Wu, X. Chen and G. Zhang, *Talanta*, 2017, 165, 216-222.
- M. Cui, G. Song, C. Wang and Q. Song, *Microchimica Acta*, 2015, **182**, 1371-1377.
- L. Zhu, X. Peng, H. Li, Y. Zhang and S. Yao, Sensors & Actuators B Chemical, 2017, 238, 196-203.
- 4. C. Dong, G. Wu, Z. Wang, W. Ren, Y. Zhang, Z. Shen, T. Li and A. Wu, *Dalton Transactions*, 2016, **45**, 8347-8354.
- W. Chen, F. Cao, W. Zheng, Y. Tian, Y. Xianyu, P. Xu, W. Zhang, Z. Wang, K. Deng and X. Jiang, *Nanoscale*, 2015, 7, 2042-2049.