Supporting Information for

Clausoxamine, an alkaloid possessing a 1,3-oxazine-4-one ring from the seeds of *Clausena lansium* and the anti-obesity effect of lansiumamide B

Li Huang,[‡]^a Dan Li,[‡]^a Yun-Shao Xu,^a Zhe-Ling Feng,^a Fan-Chen Meng,^a Qing-Wen Zhang,^a Li-She Gan,^b and Li-Gen Lin^{*,a}

^aState Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, People's Republic of China

^bCollege of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, People's Republic of China

- Table S1. Effect of lansiumamide B on liver lipid profile
- Figure S1. ¹H NMR spectrum of *clausoxamine* (1) in DMSO-*d*₆
- Figure S2. ¹³C NMR spectrum of *clausoxamine* (1) in DMSO- d_6
- Figure S3. DEPT 135 spectrum of *clausoxamine* (1) in DMSO- d_6
- Figure S4. ¹H–¹H COSY spectrum of *clausoxamine* (1) in DMSO- d_6
- Figure S5. HSQC spectrum of *clausoxamine* (1) in DMSO-*d*₆
- Figure S6. HMBC spectrum of *clausoxamine* (1) in DMSO- d_6
- Figure S7. ROESY spectrum of *clausoxamine* (1) in DMSO-d₆
- Figure S8. IR spectrum of *clausoxamine* (1)
- Figure S9. HRESIMS spectrum of *clausoxamine* (1)
- Figure S10. B3LYP/6-311+G(d) optimized lowest energy 3D conformers of 1.

 Table S1. Effect of lansiumamide B on liver lipid profile ^a

	RD	HFD	HFD + LB
cholesterol (mmol L ⁻¹)	0.77 ± 0.02	$0.94\pm0.02^{\#}$	$0.82\pm0.01^*$
HDL (mmol L ⁻¹)	1.22 ± 0.18	$0.33 \pm 0.09^{\#}$	$0.60\pm0.08^*$
LDL (mmol L ⁻¹)	0.38 ± 0.06	$0.72\pm0.04^{\#}$	$0.51\pm0.02^*$

^{*a*} Data are shown as mean \pm S.D., n = 6, #p < 0.05 RD vs. HFD group of mice.*p < 0.05, HFD + LB vs. HFD group of mice

Figure S2. ¹³C NMR spectrum of *clausoxamine* (1) in DMSO-*d*₆

Figure S3. DEPT-135 spectrum of *clausoxamine* (1) in DMSO-*d*₆

Figure S4. ¹H–¹H COSY spectrum of *clausoxamine* (1) in DMSO- d_6

Figure S6. HMBC spectrum of *clausoxamine* (1) in DMS@Pd₆

Figure S7. ROESY spectrum of *clausoxamine* (1) in DMSO- d_6

Figure S10. B3LYP/6-311+G(d) optimized lowest energy 3D conformers of **1**.

ECD simulation:

ECD spectrum of each conformation is simulated according to the overlapping Gaussian functions expressed as:

$$\Delta \varepsilon(E) = \frac{1}{2.296 \times 10^{-39} \sqrt{\pi} \sigma} \sum_{i}^{A} \Delta E_i R_i e^{\left[-(E - \Delta E_i)^2 / \sigma^2\right]}$$

Where σ is half the bandwidth at 1/e peak height and expressed in energy units. The parameters ΔE_i and R_i are the excitation energies and rotational strengths for the transition *i*, respectively.

The above function is converted to $\Delta \epsilon$, λ (wavelength) correlations as:

$$\Delta \varepsilon(\lambda) = \frac{1}{2.296 \times 10^{-39} \sqrt{\pi} \sigma} \sum_{i}^{A} \Delta E_{i} R_{i} e^{\left[-(1240/\lambda - \Delta E_{i})^{2}/\sigma^{2}\right]}$$

and then simulation were accomplished by using the Excel 2003 and the Origin 7.0 software.

To get the final spectra, all the simulated spectra of conformations of each compound were averaged according to their energy and the Boltzmann distribution theory expressed as:

$$\frac{N_i^*}{N} = \frac{g_i e^{-\varepsilon_i/k_B T}}{\sum g_i e^{-\varepsilon_i/k_B T}}$$

Energy analysis for 1

conf	Gibbs free energy (298.15 K)					
	G	ΔG	Boltzmann			
	(Hartree)	(Kcal/mol)	Distribution			
C1	-976.353416	0	0.499			
C2	-976.353410	0.003765	0.496			
C3	-976.349110	2.702058	0.005			

ECD Data for 1:

Stat	C1		C2		C3	
e	Excitation	Rotatory	Excitation	Rotatory	Excitation	Rotatory
	energies(e	Strengths	energies(e	Strengths	energies(e	Strengths
	V)	*	V)	*	V)	*
1	4.8892	5.1463	4.8891	5.1667	4.8797	6.0616
2	5.1777	-11.2253	5.1777	-11.2774	5.1751	1.4114

3	5.1932	-3.4154	5.1931	-3.4079	5.2309	-22.791
4	5.3712	-2.9113	5.371	-2.8961	5.3994	2.5861
5	5.4431	-0.3083	5.4431	-0.3082	5.4409	-6.428
6	5.5002	7.1271	5.5	7.1283	5.5168	30.7853
7	5.564	3.1864	5.564	3.1893	5.5797	10.5141
8	5.6079	2.3472	5.6079	2.3493	5.6393	-6.0291
9	5.7236	22.1421	5.7235	22.1372	5.6473	-2.4219
10	5.8161	-8.0254	5.8161	-7.994	5.6733	-5.4163
11	5.8239	-4.6048	5.8239	-4.696	5.7482	13.0391
12	5.8357	39.6298	5.8357	39.6085	5.7576	12.1201
13	5.8665	0.2875	5.8664	0.3468	5.7919	12.9807
14	5.8872	-1.1507	5.8872	-1.1396	5.8158	-4.3759
15	5.9061	-7.0823	5.906	-7.0427	5.8283	16.1267
16	5.9353	-10.7497	5.9352	-10.7531	5.8839	-11.4601
17	5.9498	8.8242	5.9497	8.8258	5.9413	26.7683
18	5.9819	-8.5895	5.9819	-8.6122	5.9666	-0.5667
19	6.0115	13.3089	6.0114	13.3397	5.9812	15.8684
20	6.0679	-36.3779	6.0679	-36.3578	6.009	-5.84
21	6.1467	-10.9679	6.1466	-10.8343	6.0438	-5.923
22	6.1591	-27.7993	6.1592	-28.0546	6.0878	-13.788
23	6.1744	44.2445	6.1743	44.434	6.1001	-11.0318
24	6.1826	58.4163	6.1826	58.2875	6.1154	10.6846
25	6.1975	-11.9345	6.1974	-11.8617	6.1554	-6.1979
26	6.223	-14.9876	6.223	-14.9393	6.1633	6.5516
27	6.2439	-8.9178	6.2438	-8.9214	6.1945	27.3276
28	6.2479	0.0691	6.2479	0.1298	6.2142	9.5963
29	6.2637	-29.1537	6.2637	-29.4067	6.2177	-28.1346
30	6.274	-14.8736	6.2739	-14.8344	6.2479	-0.5677
31	6.3052	8.156	6.3051	8.1349	6.2733	10.4512
32	6.3511	-28.2074	6.3512	-28.0671	6.2991	-6.5973
33	6.3644	11.0731	6.3644	10.946	6.3061	-5.9372
34	6.3962	24.9054	6.3962	24.9235	6.3128	-21.465
35	6.4445	-8.3494	6.4446	-8.2651	6.3137	-16.6253
36	6.4652	-35.0764	6.4652	-34.9835	6.3747	106.2558
37	6.4689	-14.846	6.4688	-14.9416	6.412	1.3543
38	6.4862	10.3948	6.4863	9.6227	6.4402	-28.4802
39	6.4909	-44.7469	6.4909	-44.6833	6.4497	32.2536
40	6.4992	74.5544	6.4992	75.2042	6.4572	20.7581
41	6.5316	15.0792	6.5314	15.1539	6.4681	-3.6809
42	6.5449	-21.2063	6.5449	-21.2386	6.4851	-22.6107
43	6.5632	20.0046	6.5631	19.8138	6.4976	84.3425
44	6.571	6.7935	6.571	6.5663	6.5	44.7682
45	6.5953	30.0162	6.5953	30.3114	6.5257	-107.316

46	6.6225	-16.7908	6.6225	-16.5709	6.5721	-5.287
47	6.6331	111.2125	6.6331	111.3005	6.5759	1.5406
48	6.6542	- 164.8094	6.6541	-164.905	6.6016	-105.556
49	6.7046	2.4209	6.7047	2.4853	6.6202	1.9077
50	6.7141	115.6556	6.7142	115.0028	6.6798	41.0684
51	6.7278	- 115.6985	6.7279	-114.905	6.682	-63.3628
52	6.7633	7.4172	6.7632	7.4806	6.7019	-12.3537
53	6.7772	33.854	6.7772	33.3828	6.7131	-20.8768
54	6.7986	68.1323	6.7986	67.5366	6.7176	-2.3911
55	6.8106	-22.2608	6.8106	-21.8094	6.7507	-13.0372
56	6.8246	45.672	6.8245	46.2103	6.7526	-60.563
57	6.8415	-43.6915	6.8416	-43.8353	6.7681	33.5111
58	6.8646	42.246	6.8646	42.1274	6.7839	1.8371
59	6.8784	13.075	6.8784	13.0462	6.7983	-87.0675
60	6.8928	-9.2864	6.8927	-9.2302	6.8119	35.4018

* R(velocity) 10**-40 erg-esu-cm