Supporting Information

Rational design of Au Dotted Co₃O₄ Nanosheets as an Efficient

Bifuctional Catalyst for Li-Oxygen Batteries

Juan Xiang ^{a‡}, Taeseup Song ^{a‡}, Ungyu Paik^a

^a Department of Energy Engineering, Hanyang University, Seoul 133-791, South Korea.

Korea.

E-mail: <u>upaik@hanyang.ac.kr</u>

[‡]These authors contributed equally to this work.

Scheme 1. Schematic illustration for the preparation of GDL-Co $_3O_4$ NSs-10/30/50Au cathode

Fig. S1. (a) SEM image of pristine GDL. Inset in (a) shows a magnified SEM image; (b) XRD pattern of GDL.

Fig. S2. XPS high-resolution spectra of (a) Co 2p, (b) O 1s of Co₃O₄ ultrathin NSs.

Fig. S3. Nitrogen adsorption isotherms of (a) GDL-30Au, (b) GDL-Co₃O₄ NSs and (c) GDL-Co₃O₄ NSs-30Au.

Fig. S4. SEM images of GDL-Co $_3O_4$ NSs with (a) 50 nm Co deposition and (b) 200 nm Co deposition

Fig. S5. Initial charge/discharge curves of GDL-30Au, GDL- Co_3O_4 NSs and GDL- Co_3O_4 NSs-30Au composite in a voltage window between 4.5 and 2.3 V at a current density of 0.5 mA cm⁻².

Table S1 Comparison of OER/ORR electrochemical characterizations of the electrode with different catalysts at the capacity of 500 mAh g^{-1} . (E^o = 2.96 V).

Catalyst	Discharging process	Charging process	Oxygen electrode	
	(E(OER) - E ^o) : E(V)	$(E^{\circ} - E(ORR)) : E(V)$	Δ (OER – ORR): E(V)	
GDL-30Au	0.70	0.57	1.27	
GDL-Co ₃ O ₄ NSs	1.11	0.38	1.49	
GDL-C0 ₃ O ₄ NSs-30Au	0.53	0.36	0.89	

Fig. S6. Initial charge/discharge curves of GDL- Co_3O_4 NSs with 50, 100 and 200 nm Co deposition.

Fig. S7. charge/discharge profiles of GDL equipped Li-O_2 batteries upon repeated cycles between 2.3 V to 4.5 V with the capacity limited to 1000 mAh g⁻¹.

Table S2 The summarized electrochemical performances of Li-O ₂ batteries	S
containing Au electrocatalyst from recent literatures.	

Literature	Capacity	Cycle	Current density	Note
1	775 mAh g ⁻¹	12	0.13 mA cm ⁻²	Au-Pd- β -MnO ₂
2	1100 mAh g ⁻¹	16	0.1 mA cm ⁻²	AuNPs-CNT
3	$1530 \sim 400 \text{mAh g}^{-1}$	120	0.6 mA cm ⁻²	Au NPs-rGO
4	1000 mAh g _c ⁻¹	50	$300 \text{ mA g}_{c}^{-1}$	Au NPs-MoS ₂
5	500 mAh g ⁻¹	200	200 mA g ⁻¹	Au- δ -MnO ₂
6	300 mAh g ⁻¹	100	500 mA g ⁻¹	Porous Au
Current work	1000 mAh g ⁻¹	70	0.5 mA cm ⁻²	Au-Co ₃ O ₄ NSs

Fig. S8. (a) SEM image and (b) TEM image of GDL-Co₃O₄ NSs-10Au. (c)SEM image and (d) TEM image of GDL-Co₃O₄ NSs-50Au; inset in (b) and (d) shows a corresponding HRTEM image of Au NP; (e) XRD pattern of GDL-Co₃O₄ NSs-10Au and GDL-Co₃O₄ NSs-50Au; EDS spectra of (f) GDL-Co₃O₄ NSs-10Au and (g) GDL-Co₃O₄ NSs-50Au.

Fig. S9. XPS spectra of of Li 1s for GDL-Co₃O₄ NSs and GDL-Co₃O₄ NSs-30Au after 1st discharge cycle with LiTFSI in TEGDME as electrolyte.

Fig. S10. SEM images of the GDL-Co₃O₄ NSs cathode with (a)1st discharged, (b) recharged, (c) 50th discharged and (d) 50th recharged state; The GDL-Co₃O₄ NSs-30Au cathode with (a)1st discharged, (b) recharged, (c) 50th discharged and (d) 50th recharged state.

References

- 1. A. K. Thapa, T. H. Shin, S. Ida, G. U. Sumanasekera, M. K. Sunkara, T. Ishihara, *J. Power Sources* **2012**, *220*, 211-216.
- 2. W. Fan, X. Guo, D. Xiao, L. Gu, J. Phys. Chem. C 2014, 118, 7344-7350.
- 3. S. Kumar, C. Selvaraj, N. Munichandraiah, L. G. Scanlon, RSC Adv. 2013, 3, 21706.
- 4. P. Zhang, X. Lu, Y. Huang, J. Deng, L. Zhang, F. Ding, Z. Su, G. Wei, O. G. Schmidt, *J. Mater. Chem. A* 2015, *3*, 14562-14566.
- 5. G. Wang, L. Huang, S. Liu, J. Xie, S. Zhang, P. Zhu, G. Cao, X. Zhao, *ACS Appl. Mater. Interfaces* **2015**, *7*, 23876-23884.
- 6. F. S. ZhPeng Z, Chen Y, Bruce PG., Science 2012, 337, 563-566.