Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

Near-infrared optical performances of two Bi₂Se₃ nanosheets

Hanhan Xiea, Jundong Shaob, Jiahong Wang*b, Zhengbo Sunb, Xue-Feng Yu*b and Qu-Quan Wang*a

^aDepartment of Physics, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, China. E-mail: qqwang@whu.edu.cn

bInstitute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China E-mails: xf.yu@siat.ac.cn, jh.wang1@siat.ac.cn

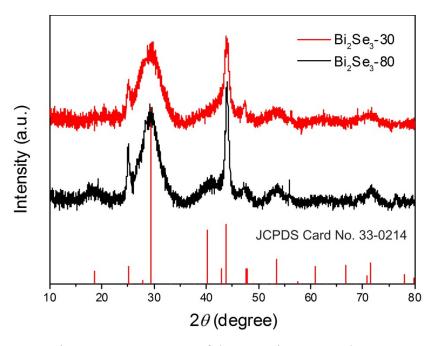


Fig. S1. XRD patterns of the two Bi_2Se_3 nanosheets.

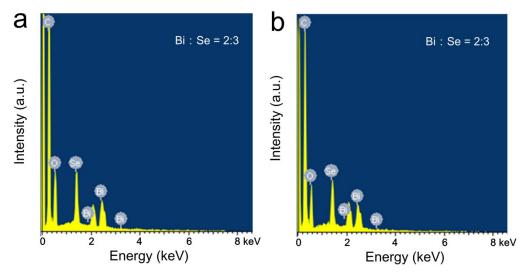


Fig. S2. EDS spectra of (a) Bi_2Se_3 -30 and (b) Bi_2Se_3 -80 nanosheets.

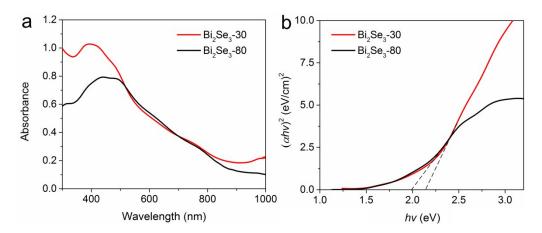


Fig. S3. (a) Absorption spectra of the two Bi_2Se_3 nanosheets. (b) Plots of $(\alpha hv)^2$ vs. hv of the two Bi_2Se_3 nanosheets.

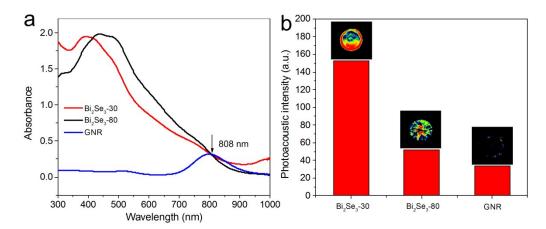


Fig. S4. (a) Absorption spectra of the two Bi_2Se_3 nanosheets and GNRs with same intensities at 808 nm. (b) Corresponding photoacoustic images and quantitative intensities of the two Bi_2Se_3 nanosheets and GNRs.