A one-step process for preparing a phenyl-modified $g-C_3N_4$ green phosphor with a high quantum yield

Tianxiang Chen, Chengcheng Chen, Qiong Liu, Zhengguo Zhang, Xiaoming Fang* Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

*Corresponding author, Tel: 86 20 87112997, Fax: 86 20 87113870, Email: cexmfang@scut.edu.cn

Scheme S1. A schematic of PhCN prepared via the one-step thermal polymerization

process from the precursor.

Annealing	C(0/)	NI (0/)	II (0/)	C/N Ratio	
temperature	C (%)	IN (%)	Н (%)		
Precursor	57.91	37.85	4.68	1.53	
380 °C	53.14	42.30	3.34	1.26	
400 °C	45.35	49.51	2.78	0.92	
420 °C	44.95	49.02	2.79	0.92	
450 °C	42.09	49.32	2.79	0.85	
480 °C	41.04	50.05	2.75	0.82	

Table S1. Element analysis of Precursor and PhCN prepared at different temperature.

Figure S1. SEM images of the precursor (a) and the samples prepared at 380 °C (b), 400 °C (c) and 420 °C (d).

Figure S2. SEM images of the precursor (a) and the samples prepared at 400 °C for 20 min (b), 40 min (c), and 60 min (d).

Annealing temperature (min)	C (%)	N (%)	H (%)	C/N ratio
20	56.31	39.57	3.86	1.42
40	52.07	44.17	3.12	1.18
60	50.75	45.57	2.78	1.11
120	45.35	49.51	2.78	0.92
240	43.66	50.45	2.75	0.86

Table S2. C/N ratio of the samples prepared at 400 °C for different annealing times.

Table S3. Area of four fitted PL peaks for the samples prepared for different times

Fitted peak	Annealing time				
_	20	40	60	120	240
Peak 1	5651	4691	2904	3172	475
Peak 2	8094	5393	5904	5690	3075
Peak 3	9144	8423	6504	5922	4875
Peak 4	9749	8753	8304	6290	6375

Material	Precursor	Preparation process	State	Quantum yield (%)	Ref.
g-CN nanosheet	Melamine	Thermal polymerization and liquid- exfoliation	Liquid	19.6%	1
g-CNQDs	Formamide	Microwave mediated	Liquid	29%	2
g-CNQDs	Urea, sodium citrate	Dialyzing CN	Liquid	42%	3
CNQDs	DCDA	Chemical tailoring	Liquid	46%	4
Ph-CNQDs	cyanuric acid/2,4-diamino-6- phenyl1,3,5-triazine	Thermal polymerization and Ultrasonication	Liquid	48.4%	5
g-CN	Melamine	Thermal polymerization	Solid	5.3%	6
g-CN	Melamine	Thermal polymerization and acid treatment	Solid	11.8%	7
Ph-CN	cyanuric acid/2,4-diamino-6- phenyl1,3,5-triazine	Thermal polymerization	Solid	17.9%	8
Ph-CN	2,4-diamino-6-phenyl1,3,5-triazine	Thermal polymerization	Solid	38.68%	This work

Table S4. A brief summary of precursor, preparation process, quantum yield of various $g-C_3N_4$ -based materials.

Reference

- 1. X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan and Y. Xie, J Am Chem Soc, 2013, 135, 18-21.
- 2. S. Barman and M. Sadhukhan, *J Mater Chem*, 2012, 22, 21832-21837.
- 3. J. Zhou, Y. Yang and C. Y. Zhang, *Chem Commun (Camb)*, 2013, 49, 8605-8607.
- 4. Z. Zhou, Y. Shen, Y. Li, A. Liu, S. Liu and Y. Zhang, *ACS Nano*, 2015, 9, 12480-12487.
- 5. Q. Cui, J. Xu, X. Wang, L. Li, M. Antonietti and M. Shalom, *Angew Chem Int Edit*, 2016, 55, 3672-3676.
- 6. D. Das, S. L. Shinde and K. K. Nanda, ACS Appl Mater Interfaces, 2016, 8, 2181-2186.
- 7. H. Y. Guo, J. Z. Y. Zhang, L. Ma, J. L. Chavez, L. Q. Yin, H. Gao, Z. L. Tang and W. Chen, *Adv Funct Mater*, 2015, 25, 6833-6838.
- 8. J. S. Xu, M. Shalom, F. Piersimoni, M. Antonietti, D. Neher and T. J. K. Brenner, *Adv Opt Mater*, 2015, 3, 913-917.