Supplementary Information

for

A Bifunctional Two Dimensional TM₃(HHTP)₂ monolayer and its variations for Oxygen Electrode Reactions

B. B. Xiao^{a*}, H. Y. Liu^a, X. B. Jiang^b, Z. D. Yu^a, Q. Jiang^{c*}

^aSchool of Energy and Power Engineering, Jiangsu University of Science and

Technology, 212003, Zhenjiang, Jiangsu, China

^bSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, 212003, Zhenjiang, Jiangsu, China

^cKey Laboratory of Automobile Materials (Jilin University), Ministry of Education,

and School of Materials Science and Engineering, Jilin University, Changchun

130022, China.

^{*}Correspondence and requests for materials should be addressed to B. B. X. (email: xiaobb11@mails.jlu.edu.cn) and Q. J. (email: jiangq@jlu.edu.cn).

Figure S1. The partially density of states of $Ni_3(HHTP)_2$ and its variations. (a) is the un-adsorbed NiX₄. (b)-(c) are OOH, O and OH adsorption systems, respectively.

Figure S2. The partially density of states of $Fe_3(HHTP)_2$ and its variations. (a) is the un-adsorbed FeX_4 . (b)-(c) are OOH, O and OH adsorption systems, respectively.