Ag⁺, Fe³⁺ and Zn²⁺ Intercalated Cadmium (II)-Metal-Organic Frameworks for enhanced Day Light Photocatalysis

Nur Atiqah Surib^a, Lan Ching Sim^b, Kah Hon Leong^b*, Aneek Kuila^c, Pichiah Saravanan^{a,c}*, Kong Mun Lo^d, Shaliza Ibrahim^a*, Detlef Bahnemann^e, Min Jang^f

^a Environmental Engineering Laboratory, Department of Civil Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

^b Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia

^c Environmental Nanotechnology Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology Dhanbad-826004 Jharkhand, India

^d Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

^e Institut fuer Technische Chemie, Leibniz Universität Hannover, Callinstrasse 3, D-30167 Hannover, Germany

^f Department of Environmental Engineering, Kwangwoon University,20 Kawangoon-ro Nowongu,Seoul 01897, Korea

^{*} Corresponding author

Email: <u>khleong@utar.edu.my</u>

Email: pichiahsaravanan@gmail.com

Email: shaliza@um.edu.my

	Cd-MOF	
Empirical formula	$H_7O_7CdC_5$	
Formula weight	291.51	
Temperature/K	100.01(10)	
Crystal system	triclinic	
Space group	P1	
a/Å	5.5108(7)	
b/Å	7.8194(10)	
c/Å	9.6854(11)	
α/°	109.785(11)	
β/°	104.283(11)	
γ/°	98.964(10)	
Volume/Å ³	367.24(8)	
Ζ	2	
Q _{calc} mg/mm ³	2.636	
m/mm ⁻¹	2.979	
F(000)	282	
2 Θ range for data collection	5.74 to 55°	
Index ranges	$-7 \le h \le 7, -10 \le k \le 10, -12 \le l \le 10$	
Reflections collected	2913	
Independent reflections	1682[R(int) = 0.0331]	
Data/restraints/parameters	1682/0/122	
Goodness-of-fit on F ²	1.206	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0304$, $wR_2 = 0.0785$	
Final R indexes [all data]	$R_1 = 0.0317$, $wR_2 = 0.0794$	
Largest diff peak/hole / a^{-3}	0.72/-1.24	

Table S1 Crystal data for Cd-MOF

Bond	Distance (Å)	Bond	Distance (Å)
Cd(1)-O(1)	2.324(3)	O(3)-C(5 ²)	1.275(6)
Cd(1)-O(1 ¹)	2.340(3)	O(4)-C(5)	1.251(5)
Cd(1)-O(3)	2.236(3)	C(1)-C(2)	1.410(6)
Cd(1)-O(5)	2.371(4)	C(1)-C(3)	1.388(6)
Cd(1)-O(6)	2.280(3)	C(1)-C(4)	1.508(6)
Cd(1)-O(7)	2.346(3)	C(2)-C(3 ³)	1.399(6)
O(1)-Cd(1 ¹)	2.340(3)	C(2)-C(5)	1.494(6)
O(1)-C(4)	1.271(5)	$C(3)-C(2^3)$	1.399(6)
O(2)-C(4)	1.253(5)	C(5)-O(3 ²)	1.275(6)
Angle	(°)	Angle	(°)
O(1)-Cd(1)-O(1 ¹)	73.94(12)	C(4)-O(1)-Cd(1 ¹)	136.4(3)
O(1)-Cd(1)-O(5)	76.18(13)	C(4)-O(1)-Cd(1)	109.3(3)
O(1 ¹)-Cd(1)-O(5)	86.59(14)	C(5 ²)-O(3)-Cd(1)	112.0(3)
O(1 ¹)-Cd(1)-O(7)	171.36(11)	C(2)-C(1)-C(4)	123.8(4)
O(1)-Cd(1)-O(7)	112.80(11)	C(3)-C(1)-(C2)	119.5(4)
O(3)-Cd(1)-O(1)	87.11(11)	C(3)-C(1)-C(4)	116.7(4)
O(3)-Cd(1)-O(1 ¹)	84.52(12)	C(1)-C(2)-C(5)	121.8(4)
O(3)-Cd(1)-O(5)	162.71(14)	$C(3^3)-C(2)-C(1)$	118.5(4)
O(3)-Cd(1)-O(6)	114.07(13)	$C(3^3)-C(2)-C(5)$	119.7(4)
O(3)-Cd(1)-O(7)	90.33(12)	$C(1)-C(3)-C(2^3)$	122.0(4)
O(6)-Cd(1)-O(1)	151.68(12)	O(1)-C(4)-C(1)	119.6(4)
O(6)-Cd(1)-O(1 ¹)	88.96(11)	O(2)-C(4)-O(1)	121.9(4)
O(6)-Cd(1)-O(5)	80.50(13)	O(2)-C(4)-C(1)	118.1(4)
O(6)-Cd(1)-O(7)	86.81(12)	O(3 ²)-C(5)-C(2)	116.8(4)
O(7)-Cd(1)-O(5)	100.12(15)	O(4)-C(5)-O(3 ²)	123.8(4)
Cd(1)-O(1)-Cd(1 ¹)	106.06(12)	O(4)-C(5)-C(2)	119.4(4)

Table S2 Selected bond and angles in Cd-MOF

Symmetry transformation ¹-X,1-Y,-Z; ²-1-X,1-Y,-Z; ³-X,1-Y,1-Z

Scherrer equation:

Eq.
$$D = \frac{k\lambda}{\beta\cos\theta}$$
(S1)

Where *D* is the crystallite size in nm, *K* is the shape constant (0.9), λ is the wavelength of Cu K α radiation (1.5406 Å), β is full width at half maximum and θ is the diffraction angle (°)³⁴.

The energy gap (E_g) was calculated by using Kubelka–Munk function.

Eq.
$$F(R\infty) = \frac{(1 - R\infty)2}{2R\infty}$$
(S2)

$$E(eV) = \frac{hC}{\lambda}$$
(S3)

Where R^{∞} is the diffused reflectance of at the given wavelength, where h is the Planck's constant (6.626 × 10⁻³⁴ J s), C is the speed of light (3.0 × 10⁸ ms⁻¹) and λ is the wavelength^{49,50}.

.

Fig. S1 The N₂ adsorption-desorption isotherms of pure Cd-MOF

Fig. S3 Adsorption performance of the studied MOFs under dark condition

Fig. S4 Reusability study (a) Cd-MOF and (b) Fe-Cd-MOF (c) Ag-Cd-MOF (d) Zn-Cd-MOF on 2-CP degradation

Fig. S5 Diffraction obtained before and after day light photocatalysis application

$$\ln \frac{C}{Co} = -kt \tag{S4}$$

Eq.

Wherein C_0 is the initial 2-CP concentration, C is the 2-CP concentration at a certain time, t is the reaction time, and k is the kinetic rate constant. The values of k can be calculated from the slope and the intercept of the linear plot⁹.

Fig. S6 The kinetics of 2-CP photodegradation under solar light irradiation