Electronic Supplementary Information

Piezotronic Effect Enhanced Photocatalyst of Ag₂S/ZnO for Degradation of Organic Dyes

Yang Zhang,^{a,†} Caihong Liu,^{a,†} Gaolong Zhu,^b Xin Huang,^a Wei Liu,^a Weiguo Hu,^a

Ming Song,^a Weidong He,^b Juan Liu^{*c} and Junyi Zhai^{*a}

^aBeijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; National Center for

Nanoscience and Technology (NCNST), Beijing, 100083, China

^bSchool of Energy Science and Engineering, University of Electronic Science and Technology, Chengdu,

Sichuan, 611731, China

^cCollege of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China

†These authors contributed equally.

Address correspondence to Junyi Zhai, jyzhai@binn.cas.cn; Juan Liu, juan.liu@pku.edu.cn.

Fig. S1 Absorption spectra of ZnO and Ag₂S@ZnO NW film.

Fig. S2 The piezopotential distribution of mechanically bended ZnO NW.

Fig. S3 SEM images of (a) ZnO NW and (b) Ag₂S@ZnO NWs after photocatalytic activity.

Fig. S4 UV-vis spectra of MB solution which catalyzed by (a-c) ZnO and (d-f) Ag₂S@ZnO NWs under illumination, sonication, and illumination/sonication conditions.

Fig. S5 SEM images of (a) ZnO NW and (b) Ag₂S@ZnO NWs on carbon fibers after dye degradations.

Fig. S6 XRD spectra of (a) ZnO and (b) Ag₂S@ZnO NWs after eight cycle of photocatalytic activity with applying sonication.

				1		
sample	Morphology	Synthetic	Illuminatio	Dye	Degradat	Ref
		method	n condition		ion rate	
					(C/C ₀)	
Ag ₂ S@ZnO	nanowires	hydrothermal	simulated	MB	~7.8 %	This
			solar light		(60 min)	work
ZnSnO ₃	nanowires	hydrothermal	UV	MB	~58 %	1
					(60 min)	
ZnO	nanoflowers	hydrothermal	UV	MO	~50 %	2
					(60 min)	
Ag ₂ O/ZnO	nanoflowers	chemical co-	UV	МО	~20 %	2
		precipitation			(60 min)	
N-, S-, and	nanoparticles	precipitation	UV	AO7	~60 %	3
C-doped					(60 min)	
ZnO						
ZnO/CuO	nanocomposite	thermal	visible	MB	~17.1 %	4
(50%/50%)	1	decomposition	light	мо	~19.3 %	
		1			(60 min)	
ZnO	microscale	calcination	UV+vis	CV	~10 %	5
_					(80 min)	
ZnO/TiO ₂	microscale	calcination	UV+vis	CV	~30 %	5
(0.02-					(80 min)	
0.05%)					()	
TiO ₂ P25	microparticle	commmercial	UV+vis	CV	~40 %	5
1102120					(80 min)	
Ni45C027@	nanocomposite	element	UV	MB	~10 %	6
Pt_{10}/ZnO	nunocomposite	lithographic	UV+vis		$\sim 20\%$	
1 (18/2110		Intilographic	0 1 1 15		(60 min)	
Pt/ZnO	nanocomposite	element	UV+vis	MB	~50 %	6
	nanocomposite	lithographic	0 1 113	IVID	(60 min)	
	nanocomposite		visible	MB	(00 mm)	7
La/TO_2 -	nanocomposite	soi-gei	light	MID	$\sim 44 / 0$	
			Ingin			
	noncomposito	ion avahanga	ainvilated	MO	10.0/	8
$NIO-Fe_2O_3$ -	nanocomposite	ion-exchange	simulated	MO	$\sim 48 \%$	0
ZnO		4 1	solar light	DID	(60 min)	9
C-aoped	nanoparticles	thermal	VISIBLE	KnB	~ 55 %	,
ZnO		decomposition	light	1.00	(60 min)	10
$ZnO(a)TiO_2/$	nanocomposite	-	simulated	MB	~55 %	10
graphene			solar light	RhB	~78 %	
					(60 min)	

Table S1 Photocatalytic performance of ZnO-based materials. MB= methylene blue; MO= methyl

 orange; AO7= acid orange 7; CV= crystal violet

1. M. K. Lo, S. Y. Lee and K. S. Chang, J. Phys. Chem. C, 2015, 119, 5218-5224.

2. L. Xu, B. Wei, W. Liu, H. Zhang, C. Su and J. Che, *Nanoscale Res. Lett.*, 2013, **8**, 536.

- 3. L. C. Chen, Y. J. Tu, Y. S. Wang, R. S. Kan and C. M. Huang, *J. Photochem. Photobiol.*, *A*, 2008, **199**, 170-178.
- 4. R. Saravanan, S. Karthikeyan, V. K. Gupta, G. Sekaran, V. Narayanan and A. Stephen, *Mater. Sci. Eng.*, *C*, 2013, **33**, 91-98.
- Y. Li, W. Xie, X. Hu, G. Shen, X. Zhou, Y. Xiang, X. Zhao and P. Fang, *Langmuir*, 2010, 26, 591-597.
- M. Wen, M. Cheng, S. Zhou, Q. Wu, N. Wang and L. Zhou, J. Phys. Chem. C, 2012, 116, 11702-11708.
- 7. M. Rostami, *RSC Adv.*, 2017, 7, 43424-43431.
- 8. Y. Lei, J. Huo and H. Liao, *RSC Adv.*, 2017, 7, 40621-40631.
- 9. S. A. Ansari, S. G. Ansari, H. Foaud and M. H. Cho, New J. Chem., 2017, 41, 9314-9320.
- 10. S. Y. Guo, J. G. Dai, T. J. Zhao, S. D. Hou, P. Zhang, P. G. Wang and G. X. Sun, *RSC Adv.*, 2017, **7**, 36787-36792.