Investigation of a Halloysite-Based Fluorescence Probe with a Highly Selective and Sensitive "Turn-On" Response upon Hydrogen Peroxide

----- Supporting Information

Jingwei Dong, Zhihang Zhao, Rui Liu, Hailei Zhang*, Yongang Wu and Xinwu Ba*

Figure S2. ¹³C NMR spectra of PF1

Figure S3. ¹H NMR spectrum of PA

Figure S4. ¹³C NMR spectrum of PA

Figure S5. the FTIR spectrum of PA

Figure S6. XPS spectra of HNTs and HNTs-PA

Figure S7. Fluorescence turn-on response of 0.1 mg/mL HNTs-PA. Date were acquired at 25 °C in 2 mL H₂O, with excitation at λ =470 nm and emission was collected between 480-700 nm. Time points represent 0-60 min after the addition of different times H₂O₂ (different times to the mole number of PA). (a) [H₂O₂] = 5 × 10⁻⁵ M (the addition amount of H₂O₂ is 1 × 10⁻⁷ mol); (b) [H₂O₂] = 2.5 × 10⁻⁴ M; (c) [H₂O₂] = 5×10^{-4} M; (d) [H₂O₂] = 2.5×10^{-3} M; (e) [H₂O₂] = 2.5×10^{-2} M. The turn-on response of each probe was completed at these time points.

Figure S8. Fluorescence "turn-on" response of 0.1 mg/mL HNTs-PA. Date were acquired at 25 °C in 2 mL H₂O, with excitation at λ =470 nm and emission was collected between 480-700 nm for HNTs-PA. Time points represent 60 min after the addition of different times H₂O₂ (1 euqal represents [H₂O₂] = 5 × 10⁻⁵ M; 5 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 10 euqal represents [H₂O₂] = 5 × 10⁻⁴ M; 50 euqal represents [H₂O₂] = 2.5 × 10⁻³ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻³ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻³ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻³ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻³ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻³ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁴ M; 500 euqal represents [H₂O₂] = 2.5 × 10⁻⁵ M].

Figure S9. Fluorescence "turn-on" response of 0.1 mg/mL HNTs-PA upon different substances. Date were obtained at 25 °C in 2 mL H₂O, with excitation at λ =470 nm. The PL intensity represents the fluorescence intensity at the maximum emission wavelength.

Figure S10. The UV-vis spectra of HNTs, PA and HNTs-PA

Figure S11. The energy dispersive spectra (EDS) results of HNTs-PA

Figure S12. Confocal fluorescence images of living Hela cells after treating with 0.5 mg/mL HNTs-PA for 1 (a and f), 2 (b and g), 4 (c and h), 8 (d and i) and 12 h (e and k) at 37 °C. The excitation wavelength was fixed at 488 nm and fluorescent signals were collected from 500 to 600 nm.

Figure S13. Plot of the fluorescence intensity of HNTs-PA solution *vs* the concentration of H_2O_2 (fluorescence intensity was recorded at 20 min after the addition of H_2O_2). Results of the linear regression for fluorescence intensity and concentration of H_2O_2 show that the linear correlation coefficient (R^2) is greater than 0.99 which indicates that the fluorescence intensity of HNTs-PA solution and concentration of H_2O_2 shows a good linearity relationship in the range from 5 ×10⁻⁵ to 5 ×10⁻³ M.

Figure S14. Cell viability of Hela cells at different concentrations of HNTs-PA. The IC_{50} value was calculated as 1.11 mg/mL