Supporting Information

Pillar[5]arene-based fluorescent polymer for selective detection and removal of mercury ions

Jin-Fa Chen, Bing-Bing Han, Jin-Feng Ma, Xi Liu, Qing-Yu Yang, Qi Lin,* Hong Yao, You-Ming Zhang and Tai-Bao Wei*

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu,

730070, P. R. China

1. Synthesis of polymer PP5

Scheme S1 Synthesis of polymer PP5.

Fig. S1 ¹H NMR spectra (600 MHz, CDCl₃) of 1,4–bis (4–bromobutoxyl) benzene **1**.

Fig. S4 High resolution mass data of a copillar[5]arene 2.

Fig. S5 ¹H NMR spectra (600 MHz, CDCl₃) of functionalized pillar[5]arene **3**.

Fig. S6 ¹³C NMR spectra (151 MHz, CDCl₃) of functionalized pillar[5]arene **3**.

Fig. S7 ¹H NMR spectra (600 MHz, CDCl₃) of pillar[5]arene 4.

Fig. S8 ¹³C NMR spectra (151 MHz, CDCl₃) of pillar[5]arene 4.

Fig. S9 High resolution mass data of pillar[5]arene 4.

Fig. S10 FT-IR spectra of polymer **PP5**. The $v_{C=N}$ band at 1620 cm⁻¹ was found, implying that polymer **PP5** was synthesized.

Scheme S2 Synthesis of the model compound M1.

Fig. S11 ¹H NMR spectra (600 MHz, DMSO- d_6) of the model compound M1.

Fig. S12 TGA data for PP5.

Fig. S13 SEM images of polymer PP5.

Fig. S14 XRD patterns of compound **4** (red), **PP5** (blue), and **PP5**+Hg²⁺ (black).

Fig. S15 Fluorescence spectral response of **PP5** ([RU]= 4×10^{-5} M) in DMSO/H₂O (1 : 1, v/v) upon addition of 10 equiv. of Hg²⁺ ($\lambda_{ex} = 340$ nm).

Determination of the detection limit

We use the 3δ way to figure out the detection limit. The process of the analysis as follows.

Fig. S16 The photograph of the linear range.

Linear Equation: Y=-51.34461X+659.60936 R²=0.98619
S=51.34461×10⁶
$$\delta = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}} = 13.9(n = 20)$$

K=3
LOD =K× δ /S= 8.12 ×10⁻⁷ M

Table S1 The adsorption experimen	nt data of polymer (PP5) to Hg ²⁺	•
-----------------------------------	---	---

	Adsorbent	Hg ²⁺ initial	Hg ²⁺ residual	Adsorption	Absorbing	
	dose (M)	concentration (M)	concentration (M)	capacity (mg/g)	rate (%)	
Sample 1	1×10-6	1×10-6	3.49×10 ⁻⁷	114	65.1%	
Sample 2	1×10-5	1×10 ⁻⁵	4.25×10 ⁻⁶	101	57.5%	
Sample 3	1×10 ⁻⁵	1×10 ⁻⁵	3.75×10 ⁻⁶	110	62.5%	
M(C - C)						

1) The adsorption capacity: $Q = \frac{M_i(C_0 - C)}{C_H M_H}$; (*M_i*: the molar mass of mercury ions; *C_o*:

Hg²⁺ initial concentration; C: Hg²⁺ residual concentration; C_H : the molar mass of the adsorbent; M_H : the molar mass of adsorbent)

2) The adsorption rate: $q = \frac{C_0 - C}{C_0} \times 100\%$.

The average adsorption capacity: $\overline{Q} = \frac{Q_1 + Q_2 + Q_3}{3} = \frac{114 + 101 + 110}{3} = 108 \text{ mg/g}.$

^{*} Corresponding author. Tel: +86 931 7970394.

E-mail address: weitaibao@126.com.