In situ coupling of Ti₂O with rutile TiO₂ as a core-shell structure and the

photocatalysis performance

Qingjie Wang^{a,b}, Jiajie Fan^{a,b}, Shilin Zhang^{a,b}, Yifan Yun^{a,b}, Jinhua Zhang^{a,b}, Peng

Zhang^{a,b,c}, Junhua Hu^{a,b,*}, Lijie Wang^{a,b,c**}, Peng Zhang^{a,b***}

^aSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002, China

^bState Centre for International Cooperation on Designer Low-carbon and Environmental Materials, Zhengzhou University, Zhengzhou 450001, China

^cHenan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450002, China.

^dEcole Polytech Fed Lausanne, Lausanne Ctr Ultrafast Sci LACUS, LSU, ISIC,FSB, Stn 6, CH-1015 Lausanne, Switzerland. (Present address)

^eInstitute for Renewable Energy and Environmental Technologies, University of Bolton, Bolton BL3 5AB ,UK

Fig.S1 The UV-Vis spectrum of the filter.

Fig.S2 (a).UV-Vis absorption spectra of as-synthesized samples at 580 $^\circ\!\!C$ for 2-10 h.

(b). The relative content of Ti_2O in the selected samples.

Fig.S3 The evolution of absorbance with the irradiation time of sample 610-6.