Supporting Information for

The recycle of red mud as excellent SCR catalyst for removal of NO_x

Changming Li,^a Hong Zeng,^{a,b} Pingle Liu,^b Jian Yu^{*},^a Feng Guo,^a Guangwen Xu^{a,c} and Zhan-

guo Zhang^d

^a State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese

Academy of Sciences, Beijing 100190, China

^b School of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, PR China

^c Institute of Industrial Chemistry and Energy technology, Shenyang University of Chemical

Technology, Shenyang 110142, China

^d National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa,

Tsukuba, 305-8569 Ibaraki, Japan

* Corresponding author. Tel.: +86-10-82544886 (Jian Yu)

E-mail address: yujian@ipe.ac.cn;

Figure S1. The detected concentration of N₂O during the catalytic test in Figure 1.

Figure S2. (A) The DeNO_x performance of Fe_2O_3/SiO_2 (a), Fe_2O_3/Al_2O_3 (b), Fe_2O_3/TiO_2 (c), $Fe_2O_3/SiO_2-Al_2O_3-TiO_2$ (d) and (B) the VWTi catalyst without inactive additives together with RM catalyst.

Figure S3. The XRD patterns of different RM samples: the calcinated original RM (a), the acid treated RM catalysts without washing (b), washed three times (c), the RM samples treated with the ratio of HNO₃/RM at 0.5 (d), the RM samples treated with the ratio of HNO₃/RM at 1 (e), the RM samples treated with the ratio of HNO₃/RM at 2 (f), the RM catalysts calcinated at 500 °C (g) and 600 °C (h).

Scheme S1 The possible Eley-Rideal mechanism over RM based catalyst at high temperature.